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Chapter 1

Motivation and purpose of Quantum
Computers

Nothing is impossible to a willing heart.
— English writer John Heywood

1.1 Development of classical computers

Intensive research of classical computers began during World War II, when
there was a need to calculate with large numbers and difficult problems in
the Manhattan project. Many scientists were brought together to face this
problem. The first computers they built were so big that they filled up a
whole room, which restricted their wider application. Fortunately in the late
1940s transistors were invented by William Shockley, John Bardeen and Walter
Brattain, which lead to massive development of classical computers.

In the next decades the computational power has risen fast. This increase
was examined by Gordon E. Moore who observed that the number of tran-
sistors doubles roughly every two years. The capabilities of many electronic
devices are strongly related to this law: memory capacity, processing speed or
sensors. This exponential increase has a huge impact in every segment of the
world economy. The increase of computational power and decrease of size of
smartphones, tablets or laptops is astonishing. The dependence of the number
of transistors on time is shown in Figure

However this exponential increase has its boundaries which will show ac-
cording to experts at the end of 2015. The increase in performance is due
to the fact that we lay more transistors on a same size chip. That is why
large processor manufacturers such as Intel or AMD try to produce smaller
and smaller transistors. However when the distance between two transistors
will get smaller then 10~°m disturbing quantum mechanical effects will take
place and the transistors will no longer work properly. The second factor that
speaks against smaller transistors is protection from overheating. At these



Chapter 1. Motivation and purpose of Quantum Computers

small distances it is almost impossible to cool the transistors by air. Liquid
cooling would be expensive for commercial use.
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Figure 1.1: CPU transistor counts against dates of introduction. Note the
logarithmic vertical scale [7].

1.2 Quantum computers and quantum computing

What should we do next? How can we increase the power of classical
computers? The answer may lie in the field of quantum mechanics. Richard
Feynman proposed, that instead of classical computers, which are working
under the laws of classical physics, we could exploit the richness of quantum
mechanics. In quantum computers bits are replaced by quantum bits (called
qubits) on which the computation is performed. At the moment there are already
existing quantum computers which are able to run special algorithms. We will
discuss the construction and experimental aspects of quantum computing in
Chapter [4

Let us consider we constructed a quantum computer. We can ask ourselves
a question. Will there be a difference between classical software and quantum
software? The answer is yes. Since quantum mechanics is a generalization of

3



Chapter 1. Motivation and purpose of Quantum Computers

classical mechanics, we should be able to construct algorithms which will be
more efficient then their classical counterparts. Several quantum algorithms
will be described in Chapter [3] Quantum mechanics opens us a new approach
to computation and we will try to explain the basics in the following chapters.



Chapter 2

Basics of Quantum Computing

2.1 Quantum bits

2.1.1 Classical bit vs. qubit

As we mentioned earlier, bits are the basic units of information in computing.
It is well known that bits can gain only two different values, either O or 1, but
only one at the same time. Will qubits have similar properties? We will try to
answer this question in this chapter.

First we will define the two computational basis vectors |0) and |1)

o=[gn-[]

These basis vectors correspond to the classical bit values 0 and 1. The
main difference between qubits and classical bits is, that qubits can be in a
superposition of these two states, that is

|¢) = a|0) + BI1), (21)

where a, B € C are the so called probability amplitudes. These two probability
amplitudes must satisfy the normalization condition

la|* + B = 1. (2.2)

We can rewrite equation (2.1) in a different form, which will help us visualize
a single qubit

) = e (o5 (5] 100+ esin (5] 1) 23)

where 6, ¢, & € R. Since the factor e in Equation has no observable
effect, it will be omitted.
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Geometrically we can represent the state of a single qubit (described by
Equation ), without the global phase on the Bloch sphereﬂ shown in Figure
[2.1] Any point on the Bloch sphere will be defined by numbers 6 and .

10)

Figure 2.1: Bloch sphere [8].

2.1.2 Two and more qubit systems

Naturally, there is a need for more qubits to perform more advanced com-
putation. A collection of n qubits is called a quantum register. The state of a
quantum register is expressed by the tensor product of the states of each qubit,
that is

|U) = |qubity_1) ® |qubity_2) ® ... ® |qubit)) ® |qubity). (2.4)

It may contain any of the N = 2"-dimensional computational basis vectors, n
qubit of size, or arbitrary superposition of these vectors.
We can show on a simple example with two qubits

_ 10y +11) _10)+11)
|¢l1>_ \/E '|¢2>_ \/? :

Now we join the two qubits into a quantum register |¢/)

"Named after Swiss physicist Felix Bloch.
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99 = i) = ey = L2 DI E N ORIE DO T+ DO 1

- |00) +]01) + [10) + [11)
N 2

We have shown, that the state of a two qubit register consists of four, linearly
weighted computational basis vectors. We got 4 new vectors: |00),|10), |01)
and |11) which are the potential contents of a classical two-bit register. In
our quantum case, we observe, that all of them are only in a single quantum
register.

Suppose we have a n qubit register. Then its general state can be characetrized
by

271
) =3 ali), (25)
i=0
201

where op € C and )_|a|> = 1. This means that such a quantum register
i=0

contains 2" different probability amplitudes (numbers)ﬂ at the same time!

2.1.3 Measuring of qubits

Our main goal is to gain information from the qubits. That means we will
have to measure them. The third postulate of quantum mechanics says that
any measurement of the observable [ associated with operator [, will convert
the measured system into its eigenstate. In our case this means that before
the measurement the qubit has both logical values, but after the measurement
we will obtain |0) with the probability «? and |1) with the probabilty 82. For
example, a qubit can be in a state

1 1
) = ﬁ|0>+ EW (26)

which when measured many times, gives the result |0) in one half of the cases
and |1) also in one half of the cases.

2.2 Quantum gates

We will want to perform operations on qubits. That means, we will have to
send a qubit through a logical gate. We will divide quantum gates into:

2If n =500, then this number is larger then the estimated number of atoms in the Universe.

7
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e Single qubit gates
e Multiple qubit gates

We can ask ourselves a question. Will there be any requirement on quantum
gates?

Every quantum state must fulfill Equation (22). After applying a gate on
state, the new state |¢) = y|0) + 0|1) has to fulfill the same normalization
condition. It can be shown that the matrix describing the qubit gate has to be

unitar

2.2.1 Single qubit gates

Gates acting on a single qubit will be represented by matrices size 2x 2. In
the following sections we will show the matrix representations of the quantum
gates and next to them its circuit representation. Most important single qubit
gates are:

e Pauli X gate

Pault Y gate

Pauli Z gate

Phase shift gate

Hadamard gate

Phase gate

Pauli X, Y, Z gates

Pauli gates are useful, mainly because they can rotate vectors. For example,
the Pauli X gate rotates a state represented by a vector on a Bloch sphere
around the X-axis by 7 radians. It is also the quantum equivalent of the NOT
gate: it turns |0) into |1) and vice versa. It is represented by the Pauli X matrix

01
-7 o] —x 27)

The Pauli Y gate rotates a vector around the Y-axis of the Bloch sphere by
7 radians. It turns state |0) to i|1) and |1) into —i|0). It is represented by the
Pault Y matrix

Y — [Q _ol] B (28)

L

3A complex square matrix U is unitary if UTU = UUT = /.

8
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The Pauli Z gate rotates a vector around the Z-axis of the Bloch sphere
by 7 radians. It does not change on state |0) and it turns |1) into -|1). It is
represented by the Pauli Z matrix

17 0
kh4]—2— 29

Phase shift gate

The phase shift gate does not change state [0) and changes |1) to e|1).
This gate does not change the probability of measuring states |0) and |1),
however it modifies the phase of state |1). This is equivalent to tracing a
horizontal circle (a line of latitude) on the Bloch sphere by ¢ radians. For
@ = 7 we get the Pauli Z gate. It is represented by the matrix

o=lo & Lo 210)

An important case is if ¢ = /4. This gate is called the 7/8 gateﬂ which will
be essential for building a universal quantum gate. Its matrix representation
are

1T 0
T:[O e”’“] — T — (2-11)

The Pauli matrices are a special case of the rotation operators (these are
also unitary). The rotation operators about the x, y and z axes are defined by
equations:

: 0 0 cos?  —ising
_ a—iOX2 _ YV i 2 _ 2 2
R.(0) = e cos (2) [ — isin (2) X {—ismg cos? ] (2.12)

{stin=  cos=

Ry(0) = e Y2 — cos (
2

N D
_
—
|
0
-]
——
N D

9 _icing
) v _ [coszg lSng] 213)

) —if2
R,(0) = e "% — cos (g) | — isin (g) 7= [e 0 6“%/21 (2.14)

With the help of these rotation matrices and phase shift gate we can create an
arbitrary unitary operator on a single qubit. We will show a theorem called
Z-Y decomposition for a single qubit, with the help of which we will express
an arbitrary single qubit rotation.

4This gate is called 71/8 not /4 due to historical reasons.
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Theorem 1 (Z-Y decomposition for a single qubit). Suppose U is a unitary
operation on a single qubit. Then there exist real numbers a, B,y and 0 such
that

U = e“R,(B)R, (y)R.(6) (2.15)
Proof. Substitute expressions (2.13) and (2.T4) into equation (2.76).
U= | oo F oo 216
e sint e cos¥
[

Corollary. Suppose U is a unitary gate on a single qubit. Then there exist
unitary operators A, B, C, where A = R,(B)R,(v/2), B = Ry(—v/2)R.(—(d +
B)/2) and C = R,((0 — B)/2) on a single qubit that ABC = [ and U =
e'”AXBXC, where a is some overall phase factor.

This theorem and its corollary will come useful in Section [22.2] when con-
structing controlled gates. The proof of this corollary can be found in [8].

Hadamard gate

The Hadamard gate is one of the most important gates in quantum comput-
ing. It turns the basis state |0) into (|0) + |1))/v/2 and |1) into (|0) — |1))/v/2.
These two states are remarkable, because they represent non basis states, in
which |0) and |1) can occur with the same probability. Geometrically this gate
represents the rotation of ;7 about the y axis. It is represented by the matrix

SRR e

Phase gate

The phase gate is an important element for building a universal quantum
gate. For now we will introduce only its circuit and matrix form and later in
Section[2.2.2 we will show its importance by constructing an arbitrary quantum
gate.

L

S = [8 Q} S Y (2.18)

Universality of the Hadamard and the phase shift gate

It can be shown, that by acting two Hadamard and two phase shift (slightly
modified, see proof) gates in the correct order on state |0), we can generate
arbitrary state of a qubit [2]

0) — cosglm - e“"sln%“ ). (2.19)

10
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[2) ei(?+w)]%[1 _11H2) ;5]%[1 _11][2)]:

1 1+ et o [ cos§
= — 7 . = @2
2 |e2te(1 — e e’sing

Since the global phase factor can be omitted (shown in section [2.1.1), the
Hadamard and the phase shift gate can represent an arbitrary quantum gate.

Proof.

2.2.2 Controlled gates

A very important part of quantum computing is to perform operation on
multiple qubit systems. For example in the case of two qubits: If the first qubit
is in state |1) then we change the state of the second qubit, else do nothing.
These kind of operations are represented by controlled gates.

Controlled-NOT gate

One of the most important controlled gates is the controlled-NOT (later we
will refer to it as CNOT) gate. The input of this gate are two qubits, called
the control qubit and the target qubit. 1t will perform the following operation:
if the control qubit is in state |1), then the target qubit is flipped, otherwise
the target qubit is left unchanged. The circuit and matrix representation of the
CNOT gate is (the top line represents the control qubit, the bottom line the
target qubit)

1000
0100

C=1o0 0 1 é (2:20)
0010

For better understanding of the CNOT gate we attached the truth table of the
CNOT gate in Table

Table 2.1: Truth table of the CNOT gate (& stands for addition modulo two).

INPUT OUTPUT

X Yy ‘x y b x

0 0|0 0@0=0
0O 1 10 1e0=1
1T 0 |1 0@1=1
T 111 1¢1=0

11
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Controlled-U gate and the implementation of controlled opera-
tion using only single qubit operations

For the following purposes let us consider an arbitrary single qubit oper-
ation U. This unitary operation will act in a similar way as the CNOT gate.
That is if the control qubit is in state |1), then we will apply U on the target
qubit, otherwise nothing is done. We will call this the controlled-U operation
and it will be represented by the circuit shown in Figure 2.2

e
U

Figure 2.2: Controlled U operation.

Finally we can use our knowledge gained in the previous sections and
show how to implement the controlled-U operation for arbitrary single qubit
operation U, using only single qubit operations and the CNOT gate.

First we will act on the target qubit with the phase shift gate if the control
qubit is |1). The corresponding single qubit operation is shown on the right

side of Figure

1 0

| s & |-
_[0 ega]_

Figure 2.3: Controlled phase shift gate on the left side as a two qubit and on
the right side as a single qubit operation [8].

In the second step we will use Corollary of Theorem 1, that is, U =
e'”AXBXC, where A, B and C are single qubit operations and ABC = /.
Now we can easily see, that if the control qubit is |1) then U is applied, other-
wise ABC = [ is applied on the target qubit (in other words nothing is done).
The final controlled-U operation is shown in Figure

Now let us complete this section by generalizing the controlled-U operation
on a set of n + [ qubits, where n is the number of control qubits and [ is the
number of target qubits. Suppose U is a unitary gate that acts on the rest [
qubits. We define C"(U) operation:

C”(U)|X1X2 .. Xn>|(7[/> = |X1X2 N .Xn>UX1X2”‘X”

o), 221)

12
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Lo
0 eza

U C B A

Figure 2.4: Controlled phase shift gate and equivalent circuit for two qubits
(8]

where x1x; . .. x, in the exponent of U means the product of the bits x;, x5, . . ., X,
This multi qubit operator works on the same principle as the two qubit operator.
That is, if the n control qubits are |1), then U acts on the [ target qubits, else
nothing is done.

Two more important control operations will be shown. The Toffoli gate and
the Fredkin gateﬂ These two gates are used also by classical computers and
since they are reversible, we can use them as quantum gates.

Fredkin gate

Before introducing the Fredkin gate, it is useful to show the SWAP gate.
It is a two qubit gate which does nothing else but swaps two qubits. Its matrix
and circuit representation

1000
0010 I

SWAP = |0 3 o ¢ (2.22)
000 1

The Fredkin gate (also called the controlled swap gate) is a three qubit
gate which performs the following operation. If the control qubit is |1), then the
two target qubits are swapped. If the control qubit is |0), then the two target
qubits are left alone. For better understanding we attached the truth values of
the Fredkin gate in Table

>Tommaso Toffoli is an Italian electrical and computer engineer and Edward Fredkin is an
American digital physics pioneer.

13
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Fredkin = (2.23)

SO O OO oo
O - OO OO oo
OO - O OO oo
- OO OO O oo

OO OO OO o —
OO OO oo —O0O
[N eNeNeNeP o)
OO OO -~ 0O O o

Toffoli gate

The Toffoli gate, often called CCNOT gate is a three qubit gate with two
control qubits and one target qubit. If the two control qubits are set, then
the target qubit is flipped, otherwise it is left aloneﬁ The Toffoli gate is used
mainly in quantum algorithms and quantum error correction. For the readers
we provided the truth values of the Toffoli gate shown in Table Its matrix
and circuit representation is (the two top lines represent the control qubit, the
bottom line the target qubit)

Toffoli = (2.24)

OO O —~ 0O O oo

OO OO OO —
ool elNolNeNol o)
OO O oo — OO0
eoNeoNeNe ol No]
OO -~ OO o oo
- O OO OO oo
O - OO O o oo

We can apply our knowledge from the previous sections and show how
we can build the Toffoli gate using only a set of single qubit gates. This
process is shown in Figure It can be shown that any unitary operation
can be constructed to an arbitrarily good approximation just from the CNOT,
Hadamard, phase and /8 gates [8].

These two important sections about single and multiple qubit gates are
important for further understanding quantum computation. We will be able
to build quantum circuits which will be able to perform computation. In this
chapter we used sources [4] 8 [9] [10]

%The Toffoli gate has been successfully realized in January 2009 at the University of Inns-
bruck, Austria.

14
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T
= [ TH——THS -

—H AT T A T T

Figure 25: Implementation of the Toffoli gate using Hadamard, phase, CNOT
and /8 gate [8].

Table 2.2: Truth table of the Toffoli and Fredkin gates. For the Toffoli gate
x and y are the control qubits and z is the target qubit before applying the
Toffoli gate and f after applying the Toffoli gate. For the Fredkin gate x is the
control qubit, gy and y, are the target qubits before applying the Fredkin gate
and z; and z, are qubits after applying Fredkin gate.

Toffoli gate Fredkin gate
Input Output Input Output
x y z|x y f H X Y Y ‘ X 71 2
0O 0 00 O OfJO O O|0 O O
o 0 1{0 0O 10 0 110 0 1
o1 00 1 00O 1 0|0 1 O
o1 10 1 140 1 1,10 1 1
10 01T O Off17 O O}1T 0 O
T 0 11 0 141 0 1|1 1 0
T 1 01 1 11 1 01T 0 1
T 1 11t 1 01T 1T 11T 11

15



Chapter 3

Quantum algorithms

Now it is time to compare classical and quantum computers in terms of
algorithms. Are quantum algorithms more efficient then their classical counter-
parts? |s it possible to simulate a classical logic circuit using a quantum circuit?
It would be surprising if the answer wouldn't be yes! In this chapter we will
show a couple of examples of quantum algorithms (Deutsch’s alogrithm, quan-
tum Fourier transform) and introduce a strange but a astonishing behaviour of
quantum computers called quantum parallelism. We will apply our quantum
gates introduced in the previous chapter and show the advantages and power
of quantum computing.

3.1 Quantum parallelism

The key for understanding quantum parallelism is superposition (Equation
(2.1)) thanks to which we are able to evaluate a function f(x) for many different
values x simultaneously.

Let us consider a function f(x): {0,1} — {0, 1}. Now we will construct a
two qubit gate which will transform an arbitrary state |x)|y) in the following
way

Oly) = )ly @ f(x)). (31)

Symbol @ stands for addition modulo 2. This gate has two input qubits (|x)|y))
and two output qubits. We will call this gate Uy and it is depicted in Figure
It can be shown, that this gate is unitary. For better understanding we
will assume |y) = |0) and that |x) = (|0) 4 |1)) /v/2. We have already shown
that this state can be produced by applying the Hadamard gate on state |0).

As shown in Figure 3.1] this gate returns the same |x) but more importantly
the second qubit returns

oy 10.70) + 11, £(1))
y) = 0) N

(32)

16
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[0)+[1)
V2

o [4)
0) — v  yaf(aH—

Figure 3.1: Two qubit U; gate, where |x) is called the data register and |y) is
called the target register [8].

which contains both 7(0) and f(1) after a single run of the gate! This property of
quantum computers is called quantum parallelism. Imagine a classical computer
would have to evaluate multiple functions on multiple circuits, its quantum
counterpart needs only one circuit for this task!

We can generalize this procedure on n number of bits. Now, let us consider
a function f(x) : {0,1}" — {0, 1}. We will start by acting with n Hadamard
gates parallel on n qubltsﬂ in state |0) (we will denote n qubits in an arbitrary
state x as |x),). We will get state

1
7 > [¥)10). 33)
xe{0,1}"

Gate Ur will act on a n + 1 size quantum register, which will change state of
the input qubits similary as in Equation (3.1)

X)aly) = IX)aly @ F(x)). (34)
The output of the generalized Uy gate (we denote {0,1}" = {0,1,...2" —1})

U 5 W) =— Y oo i)

xe{0,1}" xe{0,1}

1 1 2
= (X)) = — X f(x)). 35
@Xe%}nuu» 7 LI 35)

We have evaluated f(x) for all x in a single step independently from the
size of n! Now, as we mentioned in Section @ the case of n = 500 qubits
forming a quantum register contains more numbers than the number of atoms
in the universe. We built a gate that evaluates f(x) for all of these numbers in
a single step! Unfortunately things aren’t as good as they look. By measuring

"This operation is also called Walsh-Hadamard transform.

17



Chapter 3. Quantum algorithms

the quantum register ) _ |x)|f(x)) we would obtain only f(x) for a single value
x. Why would we evaluate functions on quantum computers if we could do
the same thing on a classical computer? In the next section we will show that
the strength is to extract information from the whole superposition of states

> POl (x)).

3.2 Deutsch’s algorithm

We are going to introduce our first quantum algorithm. The Deutsch al-
gorithm is a simple algorithm based on the Quantum Fourier Transform which
will be defined in the following chapter. Since this algorithm is very simple
and easy to understand, it is ideal to demonstrate the key ideas of quantum
parallelism and a property of quantum mechanics called quantum interference.

Let us again consider the one-bit function f : {0, 1} — {0, 1}. Our problem
is to determine the value f(0) @ f(1). If f(0)& f(1) = 0, then £(0) = (1) (f is a
constant function without knowing the values of f(0) and f(1)). If f(0)&f(1) =1,
then 7(0) # f(1)(we say that the function is balanced). The Deutsch algorithm
ts implemented by the circuit shown in Figure

The Deutsch Problem

Input: A black box for computing an unknown function f : {0,1} — {0, 1}.
Problem: Determine the value of f(0) @ f(1) by making queries to f.

|O> - T T H—

1)

[
==
<
<
D
~~
~~
8
~—

T T T T
[v0)  [¥1) [W2)  [ibs)

Figure 3.2: The quantum circuit representing Deutsch’s algorithm [8]

Now, we prepare the first qubit as the superposition (|0) 4 |1))/v/2, but we
will prepare the second qubit y as the superposition (|0) — |1))/v/2 (we can
prepare such a state by applying the Hadamard gate on |1)). We will show
how each stage of the circuit will act on two qubits by following Figure [3.2]
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First, the input state is

do = [01). 36)
After applying the Hadamard gate on both qubits we get

N (R AU P IR B
o= [P (B2 = gty = o=y + - 62)

Let us show that by applying gate Us represented by Equation (3.1) on state
1/3V/2(]0) — 1)) we get

PSR 1711 LR e )
| 2 2
ty-1; DOy -0 __[D-)__y,

V2 -2 V2

These two expressions differ by the factor (—1) which depends on the value of
f(x). We can rewrite both expressions in a more convenient way

0@ f(x)) — |1 f(x))
V2
We apply gate Ur to ¢4 and we get ¢

0)—11)

— (— f&)|

= (=1)W]-). (38)

—1)/0) £(0) _ \(O) )
) = ¢ % |o>|—>+%m>|_>:( b |0>%( N,
_ (ol T (—%OW“)I1>|_>’ 39)

where we used the fact, that (—1)"0(—1)/1) = (—1)0®7(1) We get two different
results of ¢, whether function f is constant or balanced

(—=1)O1+) =) U FO)@®f(1)=0

|42) = f(o)‘ = (3.10)
(=1)""[=)=) HFO) @ (1) +0

Finally we complete our algorithm by acting on the first qubit by the Hadamard

gate

0y — {(—1)f<0>|0>|—> i f(0)@ (1) =0 1)

(=1)OM)=) EHO)®f(1)+0
Now, by measuring the first qubit we may determine the value f(0) & f(1)

and thus whether function f is constant or balanced. Again by comparing a
quantum computer with a classical computer we see that in quantum computers
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there is a connection between values f(0) and f(1). On the other hand, no
connection can be found by evaluating these functions on a classical computer.
We say that values f(0) and (1) interfere. A generalization of the Deutsch
algorithm called the Deutsch-Jozsa algorithm and can be found in [9] [11].

3.3  Quantum Fourier transform

What kind of tasks can a quantum computer solve more efficiently than a
classical computer?

1. Algorithms based on the Fourier transform (for example the Deutsch al-
gorithm is an algorithm based on the Fourier transform)

2. Quantum search algorithms.

The Fourier transform is an extremely important mathematical operation in
almost every field of science. There are different kinds of Fourier trans-
form, we will use the discrete Fourier transform. Let us assume a vector
X = [x0,x1...xn_1]", where x;, € C. The discrete Fourier transform of x is
denoted by y=DFT(x) where the Fourier coefficients of y are defined as

N—1
_ ] 2ijkIN
yk:ﬁjzoxje JKIN. (3.12)
The quantum Fourier transform (QFT) on an orthonormal basis |0), 1) ..., |N—
1) is defined as
271

1 /o
|/> _ Z eijk/Z
\/7 k=0

k). (3.13)

Let us show the circuit representation of the QFT from which we will prove
that QFT is unltar We will consider n qubit quantum computer which will
apply the QFT on every qubit. According to [8] (with proof) the QFT can be
given to following product representation

ij2 i dn) =
(‘O> 4 eZm‘O.j,,

1)) (10) + e2m0ieti]1)) . ([0) + e

)
Jnl2 '

(3.14)

where 0.jiji11 ... jm represents the binary fraction |2 + ji/4 + ... ju /2"~

“Remember, quantum algorithms represented by a quantum gate have to be unitary!
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Building a circuit for the QFT

Input: Set of n qubits, Hadamard and modified phase shift gate
Output: Verifying Equation (3.74)

We will only need two gates, the Hadamard gate and a slightly modified
phase shift gate which we will denote as Ry

1 0
Re = [O ezm/zk] : (3.15)

However in our QF T circuit we will use it as a controlled operation (controlled-
phase shift gate). Let us follow the circuit shown in Figure 3.3} As input we
have n qubits in state |j;, jo... ). First we act by the Hadamard gate on the
first qubit and we get the state

/I 7i0.f . .
57 (10) + e D)) [ o). (3.16)
Now we apply the controlled-R, on the first qubit and we get the state
1 0 _ .
L (10)+ €O 1)) o). (3.17)

We do this operation until Ry = R,. We get

1

ﬁ (‘0> + eZmO.hjz...jn“)) ‘/2 N ]n> (318)

According to Figure 3.3 we apply a similar procedure on the second qubit.
After applying the Hadamard gate and the controlled-R, through R,_4 on it
we get

1

222 (‘0> o @201 pe o

1)) (‘O> + eZJr[O.jz...jn

D) lp. ) (319)

Finally operations on the remaining qubits in an analogous way will give us

1

ﬁ (‘0> + eZ]TIO.jqu..,jn|/I>) (|O> + ezmo.jz...jn“)) o (|O> + eZm‘O.j,,|»I>) . (320)

By using swap operations we get the wanted Equation (3.74)

(’O> + eZm’O./‘n

1)) (10) + e200nin=1|1)) (|0) 4 27.uiz-r
Zn/Z

N (3.21)

By deriving this long equation we have proven that the QFT is unitary
since we only used unitary gates. The circuit that represents the QFT uses
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in total n(n + 1)/2 Hadamard and controlled-R; gates. It can be shown that
maximum n/2 swap gates are required. Therefore the difficulty of QFT circuit
is ©(n?). In comparison with a classical computer, which computes the DFT
using ©(n2") gates we see that it needs exponentially more gates to perform
the same operation.

Unfortunately we are not able to determine the amplitudes (due to wave-
function reduction) but an important task that QF T enables is phase estimation
which we will introduce in the next section.

|1 R }“ o %Rﬂ—lH Ry, } |O> + ezmo'jlmfn|l>
| EP . {R,,_z H Rt F e [0) 2020 1)

|72

i1 d g [0) + €2Ti0:dn-1in 1)
|jn ... \i |O> + 82ﬂ"10»f11|l>

Figure 3.3: Quantum circuit implementing QFT [8].

3.3.1 Phase estimation

Phase estimation is an important part of quantum algorithms such as fac-
torization. Let us consider an unitary operator U (we do not know its exact
form) with eigenvector |u) and eigenvalue e?™. That is

Ulu) = e*™|u). (3.22)

We will use the QFT to an n bit estimation of the phase ¢. To estimate the
phase ¢ we will need two quantum registers. Again, by following the circuit
in Figure 3.4 we will approach this problem.

Phase estimation problem

Input:  Two quantum registers, Hadamard and controlled-U gate,
eigenvalue e”™ and eigenvector |u) of gate U, inverse QF T
Output: Phase ¢

The first quantum register contains t qubits in state |0). The second register
will be prepared in state |u). First we are going to apply the Hadamard gate
on the first register. After that, we apply controlled-U operation with the
successive powers of two on the second register (for better understanding see
Figure B.4). The state of the first register will be
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1

iz (100 + ) (10)+ 72 0 1)) . (j0) + e 2]1))

1 201 '
=5 > ey (323
=0

Due to Equation (3.22) the second register stays unchanged. In the next step
we apply on the first register the inverse QF T which we can obtain by reversing
the algorithm shown in the previous section.

The last step is to measure the first register and we get

211
! TTiQf| ; ~
ﬁZez ) — [@)]u) (3.24)
j=0
where |®) is a good estimation of the phase |¢). We obtain the exact result

of ¢, if ¢ can be written exactly with a t bit binary expansion. In general the
ctreuit shown in Figure 3.4] provides a good approximation of ¢.

0) @ ... 0) + Ezni(zf—1¢)|1>

First register

t qubits ‘0>

0) + e2mi(2%¢)|1)

10)

0) + e2mi(2'¢)|1)

] (]

0) 4 H 0) + BQm’(Q“@)‘l}

U2 E U2 E U2 F U F |u)

Figure 3.4: Quantum circuit implementing the phase estimation [8].

Second register { |u)

3.3.2 Order-finding

Now we will show the application of the phase estimation procedure on
another procedure called order-finding. Let us assume two positive integers
x and N, where x < N. Then we say the order of x in modulo N sense is
defined as the least natural number r such that

x'mod N =1. (3.25)

In other words we will want to find the period of the function f(p) = x” mod N
since
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f(p+r)=x"""mod N =[(x’mod N) - (x'mod N)Jmod N = f(p).  (3.26)

=1

Our task will be to find r for fixed parameters x and N. Quantum order-
finding algorithm is nothing else but the phase estimation algorithm applied
to the unitary operator

Uly) = |xy (mod N)) (3.27)

It can be shown that the eigenstates of U for 0 < s < r—1 are

r—1 .

lus) = % %exp [ 27[5/(] |x*mod N, (3.28)
with eigenvalues exp [ZLr‘S] from which thanks to the phase estimation proce-
dure we can get the value of r. To run this procedure we need to implement a
controlled-U?" which can be done by an algorithm called modular exponentia-
tion [8]. More importantly we will need to prepare an eigenstate |us). Due to
Equation we would need r. Fortunately we can escape from this awk-
ward situation by realizing that |1) is equal the superposition of eigenvectors

r—1
T2 _lu) =11 329
s=0

We emphasize that order-finding is believed to be a NP problem on a classical
computer. NP problem means, that there is no known algorithm which could
solve the problem in a polynomial (feasible) amount of time, but we are able
to check the solution of the problem in a polynomial amount of time. For
example the well-known travelling salesman problem is a NP problem. On the
other hand a quantum computer can solve this problem efficiently, that is in a
polynomial amount of time.

3.3.3 Factoring

Factoring is an essential part of cryptography. The well-known RSA@ cryp-
tosystem works on the principle of factoring

Let us consider a composite number N. Our goal will be to find a non-
trivial factor of N. Factoring uses the order-finding algorithm shown in Section
This algorithm contains five simple steps

3Named after the last names of the authors: R. Rivest, A. Shamir and L. Adleman.
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Factoring problem

Input: Composite number N.
Output: A non-trivial factor of N.

1. 1f N is even, return the factor 2.

2. Determine whether N = a® for integers @ > 1 and b > 2, and if so
return the factor a.

3. Randomly choose x in the range 1 to N—1. If gcd(x, N) > 1 (gcd stands
for greatest common divisor) then return the factor gcd(x, N).

4. Use the order-finding subroutine to find the order r of x modulo N.

5. 1f ris even and x"? # —1(mod N) then compute gcd(x? — 1, N) and
gcd(x? + 1, N), and test to see if one of these is a non-trivial factor,
returning the factor if so. Otherwise the algorithm fails.

Imagine if we could build a working quantum computer and implement
this algorithm on it. This process requires O((log N)°) operations (we get
the exact result with a limited probability, but it is easy to verify if it divides
N) thus this process is efficient and the quantum computer would be able to
break the RSA crgptosgste On the other hand a classical computer needs

@) (exp [(%k)m(log k)ZB]) where k is the number of bits of the factorized

number. For big k it is almost impossible to break RSA.

This brings us to a question: By developing a quantum computer will our
passwords or bank accounts be safe? This problem will require the development
of a new area of quantum information called quantum cryptographuy.

In this chapter we used mainly sources [8} 9, [10].

*The RSA cryptosystem is the most commonly used system to encrypt 'secret’ data.
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Latest development of quantum
computers

There have been several attempts to construct a quantum computer on var-
tous universities. These computers work on different principles where qubits
can be represented for example by two different polarizations of a photon or in
the atom model the electron can exist in the 'ground’ state |0) or in 'excited’
state |1). Many examples are shown in book [11].

We will focus on the most discussed quantum computer developed by the
private company called D-Wave. They announced their first quantum computer
in 2007, called Orion. The first notable quantum computer was the D-Wave
One on which scientific experiments were made and we will make an in depth
view of this computer. Table[4.T]shows how the D-Wave computers have evolved
in time. There has been a lot of discussion whether the 10 000 000$ machine
really takes advantage of quantum mechanics and if it outperforms classical
computers. In the following sections we will try to explain on what principle
does D-Wave constructs their computers.

Table 4.1: Advancement of the D-Wave quantum computer

Name ‘ Date of introduction ‘ Number of qubits
Orion prototype 13-Feb-07 16
D-Wave One code named Rainier 11-May-11 128
D-Wave Two code named Vesuvius early 2012 512

D:\WaUR

The Quantum Computing Company™

Figure 4.1: The logo of the D-Wave quantum computing company [12).
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Since the D-Wave One has been on the market longer than the more
powerful D-Wave Two and more experiments and scientific papers were written
about D-Wave One, we will try to explain the fundamental basics on this
computer.

As we know the most important part of a computer is its processor. The D-
Wave processor is designed to harness a fundamental principle of nature that
operate in both quantum and classical regimes - the propensity for all physical
systems to minimize their free energy. The free energy minimalization in a
classical system is often referred to as annealing. The D-Wave One is an
adiabatic quantum annealer with up to 128 superconducting flux qubits. In the
following sections we will explain what this means.

4.1  Superconducting flux qubits

As we mentioned earlier a qubit can be physically represented for example
by the polarization of a photon. The D-Wave machine uses micrometer sized
loops of superconducting metal interrupted by a number of Josephson junctions
(usually one loop contains three junctions) [13] .

Josephson effect

Josephson effect describes the emergence of electric current between
two superconductors separated by a thin layer of insulating material. It
is a special case of quantum tunneling where particles pass through a
seemingly impenetrable barrier. Devices using the Josephson effect can be
in the form of microscopic electronic components called Josephson junctions
[T4]. Schematically it is shown in Figure [4.2].

q

Figure 4.2: Diagram of a single Josephson junction. A and B represent super-
conductors, and C the weak link between them [14].

The computational basis states differ in having opposite flux (and circulating
currents). For example if the current circulates clockwise we say, that the qubit
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is in state |0) and if anti-clockwise, the qubit is in state |1). Now, in Section
we stated, that a qubit can exist in a superposition of states |0) and |1).
What does it mean for our representation of a qubit? Thanks to the Josephson
junctions in the loop the currents can 'flow both ways' In Figure [4.3] we show
schematically a diagram of energy versus applied flux.

According to the authors of article [13], the energy levels of state |0) (black
line) and state |1) (red line) are shown near the applied magnetic field of 0.5¢,
in the qubit loop. Next it can be seen, that the slope of E versus magnetic
field is the circulating current. That means that these two classical states have
opposite circulating currents. However, quantum mechanically, the charging
energy couples these two states and results in an energy level repulsion at
Pext = 0.5¢p, so that there the system is in a linear superposition of the
currents flowing in opposite directions. As the applied field is changed from
below ¢ = 0.5¢¢ to above, the circulating current goes from negative to zero
at ¢eye = 0.5¢, to positive as shown in the lower graph of Figure [43].

[ o pxy S
1 ' -
50 ‘
-1 .
0.5
q)ext ((I)O)

Figure 4.3: The energy levels for the basis state |0) (red line) and state
|1) (black line) versus applied flux. The double well potentials are shown
schematically above. On the lower graph we can see the circulating current
in the qubit for both states as a function of applied flux. The units of flux are
given in terms of the flux quantum [13]
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4.2 Quantum annealing and adiabatic quantum com-
putation

In the beginning of this chapter we stated, that D-Wave One is an adiabatic
quantum annealer. In the following sentences we will try to explain what it
means.

4.2.1 Annealing

Annealer refers to quantum annealing (QA) [15 [16]. First we will have to
distinguish simulated annealing and quantum annealing. A nice example from
metallurgy may clarify what annealing means. Annealing a metal involves
heating it and then cooling it. Before heating, the metal is filled with defects
(metastable 'high energy’ state). After heating and cooling it, the metal becomes
crystalline and defect-free (the minimum free enerqgy).

Simulating this type of thermal annealing on a classical computer is known
as simulated annealing (SA). Instead of having a fixed landscape through which
to anneal (as in the metallurgical example), in simulated annealing a program-
mer defines what the energy landscape is. This energy landscape is crafted
so that its global minimum is the answer to the problem to be solved, and
low-lying local minima are good approximations.

Minimizing free energy in a quantum systems is called quantum annealing.
Similary to classical annealing, all quantum systems are driven to minimize
their free energy. In non-programmable scenarios (metal annealing), it has been
shown that quantum annealing can hasten the energy minimisation process.

This method is particularly useful for problem where the search space is
discrete with many local minima, for example finding the ground state of a spin
glass using quantum tunneling (in the following section we will explain what
it means). That is the reason why D-Wave hopes their that quantum processor
will be faster than its classical counterpart.

Thus, D-Wave processors take advantage of quantum annealing. QA pro-
cessor can be operated as a universal quantum computer. In this regime of
operation, the computational model is referred to as adiabatic quantum compu-
tation (AQC). It can be thought as the long-time limit of QA. In the next section
AQC is explained more precisely [17]

4.2.2 Adiabatic quantum computation

Adiabatic means that the computer relies on the adiabatic theorem, which
says:

Theorem 2 (Adiabatic theorem). A physical system remains in its instantaneous
eigenstate if a given perturbation is acting on it slowly enough and if there is
a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.
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In other words, if we change slowly the external conditions of a quantum
mechanical system, its functional form also adapts to this change. On the other
hand if we change the external conditions quickly there is insufficient time for
the functional form to adapt. Adiabatic quantum computation can be described
in three simple steps [18];

1. We find a Hamiltonian whose ground state describes the solution to the
problem of interest.

2. A system with a simple Hamiltonian is prepared and initialized to the
ground state.

3. The simple Hamiltonian is adiabatically evolved to the complex Hamil-
tontan.

Thanks to the adiabatic theorem the whole new system stays in the ground
state and at the end the state of the whole system describes the solution of
the problem.

4.3 Experiment on the D-Wave One computer

D-Wave One are analog embodiments of the optimization version of the
Ising spin glass model in a magnetic field problem [19]. The processor is
designed to hasten convergence of the energy of the system towards the ground
state energy. If the system is able to reach its ground state, the configuration
of variables returned is the exact solution of the problem. If it is able to reach
only a low-lying local minimum, the configuration of variables returned is an
approximate solution [17].

The D-Wave tries to find the ground state of a spin glass model with the
Hamiltonian

H==> Jjolo] =) hot, (4.1)
i<j i
where o7 is the Pauli matrix for qubit i, h; is the local bias on qubit i and J;
is the coupling strength between qubits i and .

A problem instance is encoded in the h and J values, which are user-
programmable!

The scientists, who published article [20] made the following three experi-
ments:

1. Performed quantum annealing on the D-Wave One (DW) device.

2. Performed simulated quantum annealln (SQA).

"It is also possible to construct a simulated quantum annealing algorithm. Due to its
complexity, we refer the reader to [20)].
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3. Simulated classical annealing (SA).

Experimental setup

They performed this experiment with 1000 different random couplings J;; =
+1 (and some of the data also random fields h; = £1) in Equation (#.1) and
for every single input they performed M = 1000 annealing runs and deter-
mined whether the system reached the ground state. Then they compared the
experimental results gained from DW to SQA and SA. Mainly, they compared
the distribution of the success probabilities and the correlation between the
D-Wave device and the other models. Results are shown in Figure [4.4]

.2 T T .2 T
go S A) DW 0.25 B) SQA1
£ 0.20} 0.20} -
fla]
E i
% 0.15} 0.15} !
o
£ 0.10} 0.10} .
2
S 0.05 0.05
a{: mais

e

o
==]
o

0.2 06 08 1.0 O'O%.

o
e

0.25

C) SA
0.20}

0.15F

0.10

0.05r iﬁ i i 1

0'0%.0 02 04 06 038 1.0
Success probability

Probability distribution

Figure 4.4: Succes probabability distributions for different experiments. We
can see similar bimodal distributions for the D-Wave results (DW, panel A) and
the simulated quantum annealer (SQA, panel B), and unimodal distribution for
the simulated annealer (SA, panel C) [20].

Conclusion

In the first test they counted for each instance the number of runs Mgs in
which the ground state was reached to determine the success probability as
s = Mgs/M. In Figure H we see that DW results match well with SQA but
poorly with SA. There has been a lot of discussion about how ‘quantum’ the D-
Wave machine is [21]. The authors of article [20] claim, that quantum annealing
with more than one hundred qubits takes place in the D-Wave One device.
The key evidence is the correlation between the success probabilities on the
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device and a simulated quantum annealer (see Figure [£.4 and the similarity of
graphs on panel A and B).

The authors also compared the computational time of these algorithms.
They stated, by considering the pure annealing time, the performance matches
that of a highly optimised classical annealing code on a high-end CPU.

Figure 4.6: The inside of the D-Wave 'box. The heart of the D-Wave quantum
computer - its quantum processor [12].
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Summary and Conclusion

In this work we introduced the basic principles of quantum computers. Our
first goal was to introduce the fundamentals of quantum computing. In Chapter
2 we have shown basic quantum gates and their geometrical meaning on the
Bloch sphere. These gates are an essential part of building more complicated
quantum circuits performing different calculations.

In Chapter 3 we introduced quantum algorithms. Clearly there are many
more algorithms, such as Grover’s search algorithm (see [9]), but our main goal
was to introduce an important property of quantum computers called quantum
parallelism. Understanding parallelism enabled us to build more complicated
quantum algorithms such as Deutsch’s algorithm. By presenting the quantum
Fourier transform we were able to derive a quantum algorithm for factoring
which is extremely useful in cryptography.

Our second task in this thesis was to summarize the present development of
quantum computers from scientific papers. At several universities and laborato-
ries there are attempts to build quantum computers however we have chosen to
examine the Canadian D-Wave One device. We explained the principles how it
works and presented an experiment (finding the ground state of the Ising spin
glass model) comparing the properties of D-Wave computer with that of a clas-
sical one. It is worth saying that due to noisy, high error-rate qubits it is not
possible to run the previously mentioned algorithms (for example factorization)
on the D-Wave One device.

However as stated in article [20] it should be interesting to adress the open
question of quantum speedup on future devices with more qubits. Coing to
even larger problem sizes we soon approach the limits of classical computers.
A quantum annealer showing better scaling than classical algorithms for larger
problem sizes would be a big breakthrough, validating the potential of quantum
information processing to outperform its classical counterpart.
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