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Chapter 1

Motivation and purpose of Quantum
Computers

Nothing is impossible to a willing heart.— English writer John Heywood
1.1 Development of classical computers

Intensive research of classical computers began during World War II, whenthere was a need to calculate with large numbers and difficult problems inthe Manhattan project. Many scientists were brought together to face thisproblem. The first computers they built were so big that they filled up awhole room, which restricted their wider application. Fortunately in the late1940s transistors were invented by William Shockley, John Bardeen and WalterBrattain, which lead to massive development of classical computers.In the next decades the computational power has risen fast. This increasewas examined by Gordon E. Moore who observed that the number of tran-sistors doubles roughly every two years. The capabilities of many electronicdevices are strongly related to this law: memory capacity, processing speed orsensors. This exponential increase has a huge impact in every segment of theworld economy. The increase of computational power and decrease of size ofsmartphones, tablets or laptops is astonishing. The dependence of the numberof transistors on time is shown in Figure 1.1.However this exponential increase has its boundaries which will show ac-cording to experts at the end of 2015. The increase in performance is dueto the fact that we lay more transistors on a same size chip. That is whylarge processor manufacturers such as Intel or AMD try to produce smallerand smaller transistors. However when the distance between two transistorswill get smaller then 10−9m disturbing quantum mechanical effects will takeplace and the transistors will no longer work properly. The second factor thatspeaks against smaller transistors is protection from overheating. At these
2



Chapter 1. Motivation and purpose of Quantum Computerssmall distances it is almost impossible to cool the transistors by air. Liquidcooling would be expensive for commercial use.

Figure 1.1: CPU transistor counts against dates of introduction. Note thelogarithmic vertical scale [7].
1.2 Quantum computers and quantum computing

What should we do next? How can we increase the power of classicalcomputers? The answer may lie in the field of quantum mechanics. RichardFeynman proposed, that instead of classical computers, which are workingunder the laws of classical physics, we could exploit the richness of quantummechanics. In quantum computers bits are replaced by quantum bits (called
qubits) on which the computation is performed. At the moment there are alreadyexisting quantum computers which are able to run special algorithms. We willdiscuss the construction and experimental aspects of quantum computing inChapter 4.Let us consider we constructed a quantum computer. We can ask ourselvesa question. Will there be a difference between classical software and quantumsoftware? The answer is yes. Since quantum mechanics is a generalization of

3



Chapter 1. Motivation and purpose of Quantum Computers

classical mechanics, we should be able to construct algorithms which will bemore efficient then their classical counterparts. Several quantum algorithmswill be described in Chapter 3. Quantum mechanics opens us a new approachto computation and we will try to explain the basics in the following chapters.

4



Chapter 2

Basics of Quantum Computing

2.1 Quantum bits

2.1.1 Classical bit vs. qubitAs we mentioned earlier, bits are the basic units of information in computing.It is well known that bits can gain only two different values, either 0 or 1, butonly one at the same time. Will qubits have similar properties? We will try toanswer this question in this chapter.First we will define the two computational basis vectors |0〉 and |1〉
|0〉 ≡ [10] , |1〉 ≡ [01] .These basis vectors correspond to the classical bit values 0 and 1. Themain difference between qubits and classical bits is, that qubits can be in asuperposition of these two states, that is
|ψ〉 = α|0〉+ β|1〉, (2.1)

where α , β ∈ C are the so called probability amplitudes. These two probabilityamplitudes must satisfy the normalization condition
|α|2 + |β|2 = 1. (2.2)

We can rewrite equation (2.1) in a different form, which will help us visualizea single qubit
|ψ〉 = eiδ

(cos(θ2
)
|0〉+ eiφsin(θ2

)
|1〉) , (2.3)

where θ, φ, δ ∈ R. Since the factor eiδ in Equation 2.3 has no observableeffect, it will be omitted.
5



Chapter 2. Basics of Quantum Computing

Geometrically we can represent the state of a single qubit (described byEquation (2.3)), without the global phase on the Bloch sphere1, shown in Figure2.1. Any point on the Bloch sphere will be defined by numbers θ and φ.

Figure 2.1: Bloch sphere [8].
2.1.2 Two and more qubit systemsNaturally, there is a need for more qubits to perform more advanced com-putation. A collection of n qubits is called a quantum register. The state of aquantum register is expressed by the tensor product of the states of each qubit,that is

|ψ〉 = |qubitN−1〉 ⊗ |qubitN−2〉 ⊗ ...⊗ |qubit1〉 ⊗ |qubit0〉. (2.4)It may contain any of the N = 2n-dimensional computational basis vectors, nqubit of size, or arbitrary superposition of these vectors.We can show on a simple example with two qubits
|ψ1〉 = |0〉+ |1〉√2 , |ψ2〉 = |0〉+ |1〉√2 .

Now we join the two qubits into a quantum register |ψ〉
1Named after Swiss physicist Felix Bloch.
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Chapter 2. Basics of Quantum Computing

|ψ〉 ≡ |ψ1〉|ψ2〉 ≡ |ψ1ψ2〉 = |0〉 ⊗ |0〉+ |1〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |1〉2= |00〉+ |01〉+ |10〉+ |11〉2 .

We have shown, that the state of a two qubit register consists of four, linearlyweighted computational basis vectors. We got 4 new vectors: |00〉, |10〉, |01〉and |11〉 which are the potential contents of a classical two-bit register. Inour quantum case, we observe, that all of them are only in a single quantumregister.Suppose we have a n qubit register. Then its general state can be characetrizedby
|ψ〉 = 2n−1∑

i=0 αi|i〉, (2.5)
where αk ∈ C and 2n−1∑

i=0 |αi|2 = 1. This means that such a quantum registercontains 2n different probability amplitudes (numbers)2 at the same time!
2.1.3 Measuring of qubitsOur main goal is to gain information from the qubits. That means we willhave to measure them. The third postulate of quantum mechanics says that
any measurement of the observable Γ associated with operator Γ̂, will convert
the measured system into its eigenstate. In our case this means that beforethe measurement the qubit has both logical values, but after the measurementwe will obtain |0〉 with the probability α2 and |1〉 with the probabilty β2. Forexample, a qubit can be in a state

|ψ〉 = 1√2 |0〉+ 1√2 |1〉, (2.6)
which when measured many times, gives the result |0〉 in one half of the casesand |1〉 also in one half of the cases.
2.2 Quantum gates

We will want to perform operations on qubits. That means, we will have tosend a qubit through a logical gate. We will divide quantum gates into:
2If n = 500, then this number is larger then the estimated number of atoms in the Universe.

7



Chapter 2. Basics of Quantum Computing

• Single qubit gates
• Multiple qubit gatesWe can ask ourselves a question. Will there be any requirement on quantumgates?Every quantum state must fulfill Equation (2.2). After applying a gate onstate, the new state |φ〉 = γ|0〉 + δ|1〉 has to fulfill the same normalizationcondition. It can be shown that the matrix describing the qubit gate has to be

unitary3.
2.2.1 Single qubit gatesGates acting on a single qubit will be represented by matrices size 2×2. Inthe following sections we will show the matrix representations of the quantumgates and next to them its circuit representation. Most important single qubitgates are:
• Pauli X gate
• Pauli Y gate
• Pauli Z gate
• Phase shift gate
• Hadamard gate
• Phase gate

Pauli X, Y, Z gatesPauli gates are useful, mainly because they can rotate vectors. For example,the Pauli X gate rotates a state represented by a vector on a Bloch spherearound the X-axis by π radians. It is also the quantum equivalent of the NOTgate: it turns |0〉 into |1〉 and vice versa. It is represented by the Pauli X matrix
X = [0 11 0] (2.7)

The Pauli Y gate rotates a vector around the Y-axis of the Bloch sphere by
π radians. It turns state |0〉 to i|1〉 and |1〉 into −i|0〉. It is represented by thePauli Y matrix

Y = [0 −i
i 0 ] (2.8)

3A complex square matrix U is unitary if U†U = UU† = I .
8



Chapter 2. Basics of Quantum Computing

The Pauli Z gate rotates a vector around the Z-axis of the Bloch sphereby π radians. It does not change on state |0〉 and it turns |1〉 into -|1〉. It isrepresented by the Pauli Z matrix
Z = [1 00 −1] (2.9)

Phase shift gateThe phase shift gate does not change state |0〉 and changes |1〉 to eiφ|1〉.This gate does not change the probability of measuring states |0〉 and |1〉,however it modifies the phase of state |1〉. This is equivalent to tracing ahorizontal circle (a line of latitude) on the Bloch sphere by φ radians. For
φ = π we get the Pauli Z gate. It is represented by the matrix

φ = [1 00 eiφ
] (2.10)

An important case is if φ = π/4. This gate is called the π/8 gate4 which willbe essential for building a universal quantum gate. Its matrix representationare
T = [1 00 eiπ/4

] (2.11)
The Pauli matrices are a special case of the rotation operators (these arealso unitary). The rotation operators about the x, y and z axes are defined byequations:
Rx (θ) ≡ e−iθX/2 = cos(θ2

)
I − isin(θ2

)
X = [ cosθ2 −isinθ2

−isinθ2 cosθ2
] (2.12)

Ry(θ) ≡ e−iθY /2 = cos(θ2
)
I − isin(θ2

)
Y = [cosθ2 −isinθ2

isinθ2 cosθ2
] (2.13)

Rz(θ) ≡ e−iθZ /2 = cos(θ2
)
I − isin(θ2

)
Z = [e−iθ/2 00 eiθ/2

] (2.14)
With the help of these rotation matrices and phase shift gate we can create anarbitrary unitary operator on a single qubit. We will show a theorem called
Z-Y decomposition for a single qubit, with the help of which we will expressan arbitrary single qubit rotation.

4This gate is called π/8 not π/4 due to historical reasons.
9



Chapter 2. Basics of Quantum Computing

Theorem 1 (Z-Y decomposition for a single qubit). Suppose U is a unitary
operation on a single qubit. Then there exist real numbers α, β, γ and δ such
that

U = eiαRz(β)Ry(γ)Rz(δ) (2.15)
Proof. Substitute expressions (2.13) and (2.14) into equation (2.16).

U = [ei(α−β/2−δ/2)cos γ2 −ei(α−β/2+δ/2)sin γ2
ei(α+β/2−δ/2)sin γ2 ei(α+β/2+δ/2)cos γ2

] (2.16)
Corollary. Suppose U is a unitary gate on a single qubit. Then there existunitary operators A, B, C , where A ≡ Rz(β)Ry(γ/2), B ≡ Ry(−γ/2)Rz(−(δ +
β)/2) and C ≡ Rz((δ − β)/2) on a single qubit that ABC = I and U =
eiαAXBXC , where α is some overall phase factor.This theorem and its corollary will come useful in Section 2.2.2 when con-structing controlled gates. The proof of this corollary can be found in [8].
Hadamard gateThe Hadamard gate is one of the most important gates in quantum comput-ing. It turns the basis state |0〉 into (|0〉+ |1〉)/√2 and |1〉 into (|0〉 − |1〉)/√2.These two states are remarkable, because they represent non basis states, inwhich |0〉 and |1〉 can occur with the same probability. Geometrically this gaterepresents the rotation of π about the y axis. It is represented by the matrix

H = 1√2
[1 11 −1] (2.17)

Phase gateThe phase gate is an important element for building a universal quantumgate. For now we will introduce only its circuit and matrix form and later inSection 2.2.2 we will show its importance by constructing an arbitrary quantumgate.
S = [1 00 i

] (2.18)
Universality of the Hadamard and the phase shift gateIt can be shown, that by acting two Hadamard and two phase shift (slightlymodified, see proof) gates in the correct order on state |0〉, we can generatearbitrary state of a qubit [2]

|0〉 → cosθ2 |0〉+ eiφsinθ2 |1〉. (2.19)
10



Chapter 2. Basics of Quantum Computing

Proof. [1 00 ei( π2 +φ)
] 1√2

[1 11 −1] [1 00 ei θ2
] 1√2

[1 11 −1] [10] =
= 12

[ 1 + eiθ
e π2 +φ(1− eiθ)] = ei θ2

[ cosθ2
eφsinθ2

]
Since the global phase factor can be omitted (shown in section 2.1.1), theHadamard and the phase shift gate can represent an arbitrary quantum gate.
2.2.2 Controlled gatesA very important part of quantum computing is to perform operation onmultiple qubit systems. For example in the case of two qubits: If the first qubitis in state |1〉 then we change the state of the second qubit, else do nothing.These kind of operations are represented by controlled gates.
Controlled-NOT gateOne of the most important controlled gates is the controlled-NOT (later wewill refer to it as CNOT) gate. The input of this gate are two qubits, calledthe control qubit and the target qubit. It will perform the following operation:if the control qubit is in state |1〉, then the target qubit is flipped, otherwisethe target qubit is left unchanged. The circuit and matrix representation of theCNOT gate is (the top line represents the control qubit, the bottom line thetarget qubit)

C =


1 0 0 00 1 0 00 0 0 10 0 1 0
 (2.20)

For better understanding of the CNOT gate we attached the truth table of theCNOT gate in Table 2.1.
Table 2.1: Truth table of the CNOT gate (⊕ stands for addition modulo two).

INPUT OUTPUTx y x y⊕ x0 0 0 0⊕ 0 = 00 1 0 1⊕ 0 = 11 0 1 0⊕ 1 = 11 1 1 1⊕ 1 = 0
11



Chapter 2. Basics of Quantum Computing

Controlled-U gate and the implementation of controlled opera-
tion using only single qubit operationsFor the following purposes let us consider an arbitrary single qubit oper-ation U. This unitary operation will act in a similar way as the CNOT gate.That is if the control qubit is in state |1〉, then we will apply U on the targetqubit, otherwise nothing is done. We will call this the controlled-U operationand it will be represented by the circuit shown in Figure 2.2.

Figure 2.2: Controlled U operation.
Finally we can use our knowledge gained in the previous sections andshow how to implement the controlled-U operation for arbitrary single qubitoperation U, using only single qubit operations and the CNOT gate.First we will act on the target qubit with the phase shift gate if the controlqubit is |1〉. The corresponding single qubit operation is shown on the rightside of Figure 2.3.

Figure 2.3: Controlled phase shift gate on the left side as a two qubit and onthe right side as a single qubit operation [8].
In the second step we will use Corollary of Theorem 1, that is, U =

eiαAXBXC , where A, B and C are single qubit operations and ABC = I .Now we can easily see, that if the control qubit is |1〉 then U is applied, other-wise ABC = I is applied on the target qubit (in other words nothing is done).The final controlled-U operation is shown in Figure 2.4.Now let us complete this section by generalizing the controlled-U operationon a set of n + l qubits, where n is the number of control qubits and l is thenumber of target qubits. Suppose U is a unitary gate that acts on the rest lqubits. We define Cn(U) operation:
Cn(U)|x1x2 . . . xn〉|ψ〉 = |x1x2 . . . xn〉Ux1x2...xn|ψ〉, (2.21)

12



Chapter 2. Basics of Quantum Computing

Figure 2.4: Controlled phase shift gate and equivalent circuit for two qubits[8].
where x1x2 . . . xn in the exponent of U means the product of the bits x1, x2, . . . , xn.This multi qubit operator works on the same principle as the two qubit operator.That is, if the n control qubits are |1〉, then U acts on the l target qubits, elsenothing is done.Two more important control operations will be shown. The Toffoli gate andthe Fredkin gate5. These two gates are used also by classical computers andsince they are reversible, we can use them as quantum gates.
Fredkin gateBefore introducing the Fredkin gate, it is useful to show the SWAP gate.It is a two qubit gate which does nothing else but swaps two qubits. Its matrixand circuit representation

SWAP =


1 0 0 00 0 1 00 1 0 00 0 0 1
 (2.22)

The Fredkin gate (also called the controlled swap gate) is a three qubitgate which performs the following operation. If the control qubit is |1〉, then thetwo target qubits are swapped. If the control qubit is |0〉, then the two targetqubits are left alone. For better understanding we attached the truth values ofthe Fredkin gate in Table 2.2.
5Tommaso Toffoli is an Italian electrical and computer engineer and Edward Fredkin is anAmerican digital physics pioneer.

13



Chapter 2. Basics of Quantum Computing

Fredkin =


1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1


(2.23)

Toffoli gateThe Toffoli gate, often called CCNOT gate is a three qubit gate with twocontrol qubits and one target qubit. If the two control qubits are set, thenthe target qubit is flipped, otherwise it is left alone6. The Toffoli gate is usedmainly in quantum algorithms and quantum error correction. For the readerswe provided the truth values of the Toffoli gate shown in Table 2.2. Its matrixand circuit representation is (the two top lines represent the control qubit, thebottom line the target qubit)

Toffoli =


1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 0


(2.24)

We can apply our knowledge from the previous sections and show howwe can build the Toffoli gate using only a set of single qubit gates. Thisprocess is shown in Figure 2.5. It can be shown that any unitary operationcan be constructed to an arbitrarily good approximation just from the CNOT,Hadamard, phase and π/8 gates [8].These two important sections about single and multiple qubit gates areimportant for further understanding quantum computation. We will be ableto build quantum circuits which will be able to perform computation. In thischapter we used sources [4, 8, 9, 10].

6The Toffoli gate has been successfully realized in January 2009 at the University of Inns-bruck, Austria.
14



Chapter 2. Basics of Quantum Computing

Figure 2.5: Implementation of the Toffoli gate using Hadamard, phase, CNOTand π/8 gate [8].

Table 2.2: Truth table of the Toffoli and Fredkin gates. For the Toffoli gate
x and y are the control qubits and z is the target qubit before applying theToffoli gate and f after applying the Toffoli gate. For the Fredkin gate x is thecontrol qubit, y1 and y2 are the target qubits before applying the Fredkin gateand z1 and z2 are qubits after applying Fredkin gate.

Toffoli gate Fredkin gateInput Output Input Output
x y z x y1 f x y1 y2 x z1 z20 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 1 0 0 1 0 0 10 1 0 0 1 0 0 1 0 0 1 00 1 1 0 1 1 0 1 1 0 1 11 0 0 1 0 0 1 0 0 1 0 01 0 1 1 0 1 1 0 1 1 1 01 1 0 1 1 1 1 1 0 1 0 11 1 1 1 1 0 1 1 1 1 1 1
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Chapter 3

Quantum algorithms

Now it is time to compare classical and quantum computers in terms ofalgorithms. Are quantum algorithms more efficient then their classical counter-parts? Is it possible to simulate a classical logic circuit using a quantum circuit?It would be surprising if the answer wouldn’t be yes! In this chapter we willshow a couple of examples of quantum algorithms (Deutsch’s alogrithm, quan-
tum Fourier transform) and introduce a strange but a astonishing behaviour ofquantum computers called quantum parallelism. We will apply our quantumgates introduced in the previous chapter and show the advantages and powerof quantum computing.
3.1 Quantum parallelism

The key for understanding quantum parallelism is superposition (Equation(2.1)) thanks to which we are able to evaluate a function f (x) for many differentvalues x simultaneously.Let us consider a function f (x) : {0, 1} → {0, 1}. Now we will construct atwo qubit gate which will transform an arbitrary state |x〉|y〉 in the followingway
|x〉|y〉 → |x〉|y⊕ f (x)〉. (3.1)Symbol ⊕ stands for addition modulo 2. This gate has two input qubits (|x〉|y〉)and two output qubits. We will call this gate Uf and it is depicted in Figure3.1. It can be shown, that this gate is unitary. For better understanding wewill assume |y〉 = |0〉 and that |x〉 = (|0〉+ |1〉) /√2. We have already shownthat this state can be produced by applying the Hadamard gate on state |0〉.As shown in Figure 3.1 this gate returns the same |x〉 but more importantlythe second qubit returns

|y〉 = |0〉 → |0, f (0)〉+ |1, f (1)〉√2 , (3.2)
16



Chapter 3. Quantum algorithms

Figure 3.1: Two qubit Uf gate, where |x〉 is called the data register and |y〉 iscalled the target register [8].
which contains both f (0) and f (1) after a single run of the gate! This property ofquantum computers is called quantum parallelism. Imagine a classical computerwould have to evaluate multiple functions on multiple circuits, its quantumcounterpart needs only one circuit for this task!We can generalize this procedure on n number of bits. Now, let us considera function f (x) : {0, 1}n → {0, 1}. We will start by acting with n Hadamardgates parallel on n qubits1 in state |0〉 (we will denote n qubits in an arbitrarystate x as |x〉n). We will get state1√2n ∑

x∈{0,1}n |x〉|0〉. (3.3)
Gate Uf will act on a n+ 1 size quantum register, which will change state ofthe input qubits similary as in Equation (3.1)

|x〉n|y〉 → |x〉n|y⊕ f (x)〉. (3.4)The output of the generalized Uf gate (we denote {0, 1}n ≡ {0, 1, . . . 2n − 1})
Uf

1√2n ∑
x∈{0,1}n |x〉|0〉 = 1√2n ∑

x∈{0,1}n |x〉|0⊕ f (x)〉
= 1√2n ∑

x∈{0,1}n |x〉|f (x)〉 = 1√2n
2n−1∑
x=0 |x〉|f (x)〉. (3.5)

We have evaluated f (x) for all x in a single step independently from thesize of n! Now, as we mentioned in Section 2.1.2 the case of n = 500 qubitsforming a quantum register contains more numbers than the number of atomsin the universe. We built a gate that evaluates f (x) for all of these numbers ina single step! Unfortunately things aren’t as good as they look. By measuring
1This operation is also called Walsh-Hadamard transform.
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Chapter 3. Quantum algorithms

the quantum register ∑x |x〉|f (x)〉 we would obtain only f (x) for a single value
x . Why would we evaluate functions on quantum computers if we could dothe same thing on a classical computer? In the next section we will show thatthe strength is to extract information from the whole superposition of states∑

x |x〉|f (x)〉.
3.2 Deutsch’s algorithm

We are going to introduce our first quantum algorithm. The Deutsch al-gorithm is a simple algorithm based on the Quantum Fourier Transform whichwill be defined in the following chapter. Since this algorithm is very simpleand easy to understand, it is ideal to demonstrate the key ideas of quantum
parallelism and a property of quantum mechanics called quantum interference.Let us again consider the one-bit function f : {0, 1} → {0, 1}. Our problemis to determine the value f (0)⊕ f (1). If f (0)⊕ f (1) = 0, then f (0) = f (1) (f is aconstant function without knowing the values of f (0) and f (1)). If f (0)⊕f (1) = 1,then f (0) 6= f (1)(we say that the function is balanced). The Deutsch algorithmis implemented by the circuit shown in Figure 3.2

The Deutsch Problem

Input: A black box for computing an unknown function f : {0, 1} → {0, 1}.
Problem: Determine the value of f (0)⊕ f (1) by making queries to f .

Figure 3.2: The quantum circuit representing Deutsch’s algorithm [8]
Now, we prepare the first qubit as the superposition (|0〉+ |1〉)/√2, but wewill prepare the second qubit y as the superposition (|0〉 − |1〉)/√2 (we canprepare such a state by applying the Hadamard gate on |1〉). We will showhow each stage of the circuit will act on two qubits by following Figure 3.2.
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First, the input state is
ψ0 = |01〉. (3.6)After applying the Hadamard gate on both qubits we get

ψ1 = [ |0〉+ |1〉√2
] [
|0〉 − |1〉√2

]
≡ |+〉|−〉 = 1√2 |0〉|−〉+ 1√2 |1〉|−〉, (3.7)

Let us show that by applying gate Uf represented by Equation (3.1) on state1/√2(|0〉 − |1〉) we get
f (x) = 0 : |0⊕ f (x)〉 − |1⊕ f (x)〉√2 = |0〉 − |1〉√2 = |−〉
f (x) = 1 : |0⊕ f (x)〉 − |1⊕ f (x)〉√2 = |1〉 − |0〉√2 = − [ |0〉 − |1〉√2

] = −|−〉.
These two expressions differ by the factor (−1) which depends on the value of
f (x). We can rewrite both expressions in a more convenient way

|0⊕ f (x)〉 − |1⊕ f (x)〉√2 = (−1)f (x) |0〉 − |1〉√2 = (−1)f (x)|−〉. (3.8)
We apply gate Uf to ψ1 and we get ψ2

|ψ2〉 = (−1)f (0)
√2 |0〉|−〉+ (1)f (0)

√2 |1〉|−〉 = (−1)f (0)|0〉+ (−1)f (1)|1〉√2 |−〉

= (−1)f (0) |0〉+ (−1)f (0)⊕f (1)|1〉√2 |−〉, (3.9)
where we used the fact, that (−1)f (0)(−1)f (1) = (−1)f (0)⊕f (1). We get two differentresults of ψ2 whether function f is constant or balanced

|ψ2〉 = {(−1)f (0)|+〉|−〉 if f (0)⊕ f (1) = 0(−1)f (0)|−〉|−〉 if f (0)⊕ f (1) 6= 0 (3.10)
Finally we complete our algorithm by acting on the first qubit by the Hadamardgate

|ψ3〉 = {(−1)f (0)|0〉|−〉 if f (0)⊕ f (1) = 0(−1)f (0)|1〉|−〉 if f (0)⊕ f (1) 6= 0 (3.11)
Now, by measuring the first qubit we may determine the value f (0)⊕ f (1)and thus whether function f is constant or balanced. Again by comparing aquantum computer with a classical computer we see that in quantum computers
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there is a connection between values f (0) and f (1). On the other hand, noconnection can be found by evaluating these functions on a classical computer.We say that values f (0) and f (1) interfere. A generalization of the Deutschalgorithm called the Deutsch-Jozsa algorithm and can be found in [9, 11].
3.3 Quantum Fourier transform

What kind of tasks can a quantum computer solve more efficiently than aclassical computer?1. Algorithms based on the Fourier transform (for example the Deutsch al-gorithm is an algorithm based on the Fourier transform)2. Quantum search algorithms.The Fourier transform is an extremely important mathematical operation inalmost every field of science. There are different kinds of Fourier trans-form, we will use the discrete Fourier transform. Let us assume a vector
x = [x0, x1 . . . xN−1]T , where xi ∈ C. The discrete Fourier transform of x isdenoted by y=DFT(x) where the Fourier coefficients of y are defined as

yk ≡
1√
n

N−1∑
j=0 xje

2πijk/N . (3.12)
The quantum Fourier transform (QFT) on an orthonormal basis |0〉, |1〉 . . . , |N−1〉 is defined as

|j〉 → 1√2n
2n−1∑
k=0 e

2πijk/2n|k〉. (3.13)
Let us show the circuit representation of the QFT from which we will provethat QFT is unitary2. We will consider n qubit quantum computer which willapply the QFT on every qubit. According to [8] (with proof) the QFT can begiven to following product representation

|j1, j2 . . . , jn〉 →(
|0〉+ e2πi0.jn|1〉) (|0〉+ e2πi0.jn−1jn|1〉) . . . (|0〉+ e2πi0.j1j2...jn|1〉)2n/2 ,(3.14)

where 0.jljl+1 . . . jm represents the binary fraction jl/2 + jl/4 + . . . jm/2m−l+1.
2Remember, quantum algorithms represented by a quantum gate have to be unitary!
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Building a circuit for the QFT

Input: Set of n qubits, Hadamard and modified phase shift gate
Output: Verifying Equation (3.14)

We will only need two gates, the Hadamard gate and a slightly modifiedphase shift gate which we will denote as Rk
Rk ≡

[1 00 e2πi/2k
]
. (3.15)

However in our QFT circuit we will use it as a controlled operation (controlled-phase shift gate). Let us follow the circuit shown in Figure 3.3. As input wehave n qubits in state |j1, j2 . . . jn〉. First we act by the Hadamard gate on thefirst qubit and we get the state121/2 (|0〉+ e2πi0.j1|1〉) |j2 . . . jn〉. (3.16)Now we apply the controlled-R2 on the first qubit and we get the state121/2 (|0〉+ e2πi0.j1j2|1〉) |j2 . . . jn〉. (3.17)We do this operation until Rk = Rn. We get121/2 (|0〉+ e2πi0.j1j2...jn|1〉) |j2 . . . jn〉. (3.18)According to Figure 3.3 we apply a similar procedure on the second qubit.After applying the Hadamard gate and the controlled-R2 through Rn−1 on itwe get 122/2 (|0〉+ e2πi0.j1j2...jn|1〉) (|0〉+ e2πi0.j2...jn|1〉) |j3 . . . jn〉. (3.19)Finally operations on the remaining qubits in an analogous way will give us
122/n (|0〉+ e2πi0.j1j2...jn|1〉) (|0〉+ e2πi0.j2...jn|1〉) . . . (|0〉+ e2πi0.jn|1〉) . (3.20)

By using swap operations we get the wanted Equation (3.14)
(
|0〉+ e2πi0.jn|1〉) (|0〉+ e2πi0.jnjn−1|1〉) (|0〉+ e2πi0.j1j2...jn|1〉)2n/2 . (3.21)

By deriving this long equation we have proven that the QFT is unitarysince we only used unitary gates. The circuit that represents the QFT uses
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in total n(n + 1)/2 Hadamard and controlled-Rk gates. It can be shown thatmaximum n/2 swap gates are required. Therefore the difficulty of QFT circuitis Θ(n2). In comparison with a classical computer, which computes the DFTusing Θ(n2n) gates we see that it needs exponentially more gates to performthe same operation.Unfortunately we are not able to determine the amplitudes (due to wave-function reduction) but an important task that QFT enables is phase estimationwhich we will introduce in the next section.

Figure 3.3: Quantum circuit implementing QFT [8].
3.3.1 Phase estimationPhase estimation is an important part of quantum algorithms such as fac-torization. Let us consider an unitary operator U (we do not know its exactform) with eigenvector |u〉 and eigenvalue e2πiφ . That is

U|u〉 = e2πiφ|u〉. (3.22)We will use the QFT to an n bit estimation of the phase φ. To estimate thephase φ we will need two quantum registers. Again, by following the circuitin Figure 3.4 we will approach this problem.
Phase estimation problem

Input: Two quantum registers, Hadamard and controlled-U gate,eigenvalue e2πiφ and eigenvector |u〉 of gate U , inverse QFT
Output: Phase φ

The first quantum register contains t qubits in state |0〉. The second registerwill be prepared in state |u〉. First we are going to apply the Hadamard gateon the first register. After that, we apply controlled-U operation with thesuccessive powers of two on the second register (for better understanding seeFigure 3.4). The state of the first register will be
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12t/2 (|0〉+ e2πi2t−1φ|1〉)(|0〉+ e2πi2t−2φ|1〉) . . .(|0〉+ e2πi20φ|1〉)
= 12t/2 2t−1∑

l=0 e
2πiφl|l〉. (3.23)

Due to Equation (3.22) the second register stays unchanged. In the next stepwe apply on the first register the inverse QFT which we can obtain by reversingthe algorithm shown in the previous section.The last step is to measure the first register and we get
12t/2 2t−1∑

j=0 e
2πiφj |j〉|u〉 → |φ̃〉|u〉 (3.24)

where |φ̃〉 is a good estimation of the phase |φ〉. We obtain the exact resultof φ, if φ can be written exactly with a t bit binary expansion. In general thecircuit shown in Figure 3.4 provides a good approximation of φ.

Figure 3.4: Quantum circuit implementing the phase estimation [8].
3.3.2 Order-findingNow we will show the application of the phase estimation procedure onanother procedure called order-finding. Let us assume two positive integers
x and N , where x < N . Then we say the order of x in modulo N sense isdefined as the least natural number r such that

xrmod N = 1. (3.25)In other words we will want to find the period of the function f (p) = xp mod Nsince
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f (p+ r) = xp+r mod N = [(xpmod N) · (xrmod N︸ ︷︷ ︸=1 )]mod N = f (p). (3.26)
Our task will be to find r for fixed parameters x and N . Quantum order-finding algorithm is nothing else but the phase estimation algorithm appliedto the unitary operator

U|y〉 = |xy (mod N)〉 (3.27)It can be shown that the eigenstates of U for 0 ≤ s ≤ r − 1 are
|us〉 = 1√

r

r−1∑
k=0 exp [−2πisk

r

]
|xkmod N〉, (3.28)

with eigenvalues exp [2πis
r
] from which thanks to the phase estimation proce-dure we can get the value of r . To run this procedure we need to implement acontrolled-U2j which can be done by an algorithm called modular exponentia-

tion [8]. More importantly we will need to prepare an eigenstate |us〉. Due toEquation (3.28) we would need r . Fortunately we can escape from this awk-ward situation by realizing that |1〉 is equal the superposition of eigenvectors
1√
r

r−1∑
s=0 |us〉 = |1〉. (3.29)

We emphasize that order-finding is believed to be a NP problem on a classicalcomputer. NP problem means, that there is no known algorithm which couldsolve the problem in a polynomial (feasible) amount of time, but we are ableto check the solution of the problem in a polynomial amount of time. Forexample the well-known travelling salesman problem is a NP problem. On theother hand a quantum computer can solve this problem efficiently, that is in apolynomial amount of time.
3.3.3 FactoringFactoring is an essential part of cryptography. The well-known RSA3 cryp-tosystem works on the principle of factoringLet us consider a composite number N . Our goal will be to find a non-trivial factor of N . Factoring uses the order-finding algorithm shown in Section3.3.2. This algorithm contains five simple steps

3Named after the last names of the authors: R. Rivest, A. Shamir and L. Adleman.
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Factoring problem

Input: Composite number N .
Output: A non-trivial factor of N .
1. If N is even, return the factor 2.2. Determine whether N = ab for integers a ≥ 1 and b ≥ 2, and if soreturn the factor a.3. Randomly choose x in the range 1 to N−1. If gcd(x,N) > 1 (gcd standsfor greatest common divisor) then return the factor gcd(x,N).4. Use the order-finding subroutine to find the order r of x modulo N .5. If r is even and xr/2 6= −1(mod N) then compute gcd(xr/2 − 1, N) andgcd(xr/2 + 1, N), and test to see if one of these is a non-trivial factor,returning the factor if so. Otherwise the algorithm fails.
Imagine if we could build a working quantum computer and implementthis algorithm on it. This process requires O((log N)3) operations (we getthe exact result with a limited probability, but it is easy to verify if it divides

N) thus this process is efficient and the quantum computer would be able tobreak the RSA cryptosystem4. On the other hand a classical computer needs
O
(exp [(649 k)1/3 (log k )2/3]) where k is the number of bits of the factorizednumber. For big k it is almost impossible to break RSA.This brings us to a question: By developing a quantum computer will ourpasswords or bank accounts be safe? This problem will require the developmentof a new area of quantum information called quantum cryptography.In this chapter we used mainly sources [8, 9, 10].

4The RSA cryptosystem is the most commonly used system to encrypt ’secret’ data.
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Latest development of quantum
computers

There have been several attempts to construct a quantum computer on var-ious universities. These computers work on different principles where qubitscan be represented for example by two different polarizations of a photon or inthe atom model the electron can exist in the ’ground’ state |0〉 or in ’excited’state |1〉. Many examples are shown in book [11].We will focus on the most discussed quantum computer developed by theprivate company called D-Wave. They announced their first quantum computerin 2007, called Orion. The first notable quantum computer was the D-WaveOne on which scientific experiments were made and we will make an in depthview of this computer. Table 4.1 shows how the D-Wave computers have evolvedin time. There has been a lot of discussion whether the 10 000 000$ machinereally takes advantage of quantum mechanics and if it outperforms classicalcomputers. In the following sections we will try to explain on what principledoes D-Wave constructs their computers.
Table 4.1: Advancement of the D-Wave quantum computer

Name Date of introduction Number of qubits
Orion prototype 13-Feb-07 16D-Wave One code named Rainier 11-May-11 128D-Wave Two code named Vesuvius early 2012 512

Figure 4.1: The logo of the D-Wave quantum computing company [12].
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Since the D-Wave One has been on the market longer than the morepowerful D-Wave Two and more experiments and scientific papers were writtenabout D-Wave One, we will try to explain the fundamental basics on thiscomputer.As we know the most important part of a computer is its processor. The D-Wave processor is designed to harness a fundamental principle of nature thatoperate in both quantum and classical regimes - the propensity for all physicalsystems to minimize their free energy. The free energy minimalization in aclassical system is often referred to as annealing. The D-Wave One is an
adiabatic quantum annealer with up to 128 superconducting flux qubits. In thefollowing sections we will explain what this means.
4.1 Superconducting flux qubits

As we mentioned earlier a qubit can be physically represented for exampleby the polarization of a photon. The D-Wave machine uses micrometer sizedloops of superconducting metal interrupted by a number of Josephson junctions(usually one loop contains three junctions) [13] .
Josephson effect

Josephson effect describes the emergence of electric current betweentwo superconductors separated by a thin layer of insulating material. Itis a special case of quantum tunneling where particles pass through aseemingly impenetrable barrier. Devices using the Josephson effect can bein the form of microscopic electronic components called Josephson junctions[14]. Schematically it is shown in Figure 4.2 .

Figure 4.2: Diagram of a single Josephson junction. A and B represent super-conductors, and C the weak link between them [14].
The computational basis states differ in having opposite flux (and circulatingcurrents). For example if the current circulates clockwise we say, that the qubit
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is in state |0〉 and if anti-clockwise, the qubit is in state |1〉. Now, in Section2.1.1 we stated, that a qubit can exist in a superposition of states |0〉 and |1〉.What does it mean for our representation of a qubit? Thanks to the Josephsonjunctions in the loop the currents can ’flow both ways’. In Figure 4.3 we showschematically a diagram of energy versus applied flux.According to the authors of article [13], the energy levels of state |0〉 (blackline) and state |1〉 (red line) are shown near the applied magnetic field of 0.5φ0in the qubit loop. Next it can be seen, that the slope of E versus magneticfield is the circulating current. That means that these two classical states haveopposite circulating currents. However, quantum mechanically, the chargingenergy couples these two states and results in an energy level repulsion at
φext = 0.5φ0, so that there the system is in a linear superposition of thecurrents flowing in opposite directions. As the applied field is changed frombelow φext = 0.5φ0 to above, the circulating current goes from negative to zeroat φext = 0.5φ0, to positive as shown in the lower graph of Figure 4.3 .

Figure 4.3: The energy levels for the basis state |0〉 (red line) and state
|1〉 (black line) versus applied flux. The double well potentials are shownschematically above. On the lower graph we can see the circulating currentin the qubit for both states as a function of applied flux. The units of flux aregiven in terms of the flux quantum [13].
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4.2 Quantum annealing and adiabatic quantum com-
putation

In the beginning of this chapter we stated, that D-Wave One is an adiabaticquantum annealer. In the following sentences we will try to explain what itmeans.
4.2.1 AnnealingAnnealer refers to quantum annealing (QA) [15, 16]. First we will have todistinguish simulated annealing and quantum annealing. A nice example frommetallurgy may clarify what annealing means. Annealing a metal involvesheating it and then cooling it. Before heating, the metal is filled with defects(metastable ’high energy’ state). After heating and cooling it, the metal becomescrystalline and defect-free (the minimum free energy).Simulating this type of thermal annealing on a classical computer is knownas simulated annealing (SA). Instead of having a fixed landscape through whichto anneal (as in the metallurgical example), in simulated annealing a program-mer defines what the energy landscape is. This energy landscape is craftedso that its global minimum is the answer to the problem to be solved, andlow-lying local minima are good approximations.Minimizing free energy in a quantum systems is called quantum annealing.Similary to classical annealing, all quantum systems are driven to minimizetheir free energy. In non-programmable scenarios (metal annealing), it has beenshown that quantum annealing can hasten the energy minimisation process.This method is particularly useful for problem where the search space isdiscrete with many local minima, for example finding the ground state of a spin
glass using quantum tunneling (in the following section we will explain whatit means). That is the reason why D-Wave hopes their that quantum processorwill be faster than its classical counterpart.Thus, D-Wave processors take advantage of quantum annealing. QA pro-cessor can be operated as a universal quantum computer. In this regime ofoperation, the computational model is referred to as adiabatic quantum compu-
tation (AQC). It can be thought as the long-time limit of QA. In the next sectionAQC is explained more precisely [17].
4.2.2 Adiabatic quantum computationAdiabatic means that the computer relies on the adiabatic theorem, whichsays:
Theorem 2 (Adiabatic theorem). A physical system remains in its instantaneous
eigenstate if a given perturbation is acting on it slowly enough and if there is
a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.

29



Chapter 4. Latest development of quantum computers

In other words, if we change slowly the external conditions of a quantummechanical system, its functional form also adapts to this change. On the otherhand if we change the external conditions quickly there is insufficient time forthe functional form to adapt. Adiabatic quantum computation can be describedin three simple steps [18]:
1. We find a Hamiltonian whose ground state describes the solution to theproblem of interest.2. A system with a simple Hamiltonian is prepared and initialized to theground state.3. The simple Hamiltonian is adiabatically evolved to the complex Hamil-tonian.
Thanks to the adiabatic theorem the whole new system stays in the groundstate and at the end the state of the whole system describes the solution ofthe problem.

4.3 Experiment on the D-Wave One computer
D-Wave One are analog embodiments of the optimization version of theIsing spin glass model in a magnetic field problem [19]. The processor isdesigned to hasten convergence of the energy of the system towards the groundstate energy. If the system is able to reach its ground state, the configurationof variables returned is the exact solution of the problem. If it is able to reachonly a low-lying local minimum, the configuration of variables returned is anapproximate solution [17].The D-Wave tries to find the ground state of a spin glass model with theHamiltonian

H = −∑
i<j

Jijσ zi σ zj −
∑
i
hiσ zi , (4.1)

where σ zi is the Pauli matrix for qubit i, hi is the local bias on qubit i and Jijis the coupling strength between qubits i and j .A problem instance is encoded in the h and J values, which are user-programmable!The scientists, who published article [20] made the following three experi-ments:
1. Performed quantum annealing on the D-Wave One (DW) device.2. Performed simulated quantum annealing1 (SQA).
1It is also possible to construct a simulated quantum annealing algorithm. Due to itscomplexity, we refer the reader to [20].
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3. Simulated classical annealing (SA).
Experimental setupThey performed this experiment with 1000 different random couplings Jij =
±1 (and some of the data also random fields hi = ±1) in Equation (4.1) andfor every single input they performed M = 1000 annealing runs and deter-mined whether the system reached the ground state. Then they compared theexperimental results gained from DW to SQA and SA. Mainly, they comparedthe distribution of the success probabilities and the correlation between theD-Wave device and the other models. Results are shown in Figure 4.4

Figure 4.4: Succes probabability distributions for different experiments. Wecan see similar bimodal distributions for the D-Wave results (DW, panel A) andthe simulated quantum annealer (SQA, panel B), and unimodal distribution forthe simulated annealer (SA, panel C) [20].
ConclusionIn the first test they counted for each instance the number of runs MGS inwhich the ground state was reached to determine the success probability as
s = MGS /M . In Figure 4.4 we see that DW results match well with SQA butpoorly with SA. There has been a lot of discussion about how ’quantum’ the D-Wave machine is [21]. The authors of article [20] claim, that quantum annealingwith more than one hundred qubits takes place in the D-Wave One device.The key evidence is the correlation between the success probabilities on the
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device and a simulated quantum annealer (see Figure 4.4 and the similarity ofgraphs on panel A and B).The authors also compared the computational time of these algorithms.They stated, by considering the pure annealing time, the performance matchesthat of a highly optimised classical annealing code on a high-end CPU.

Figure 4.5: Three D-Wave ’boxes’ side by side [12].

Figure 4.6: The inside of the D-Wave ’box’. The heart of the D-Wave quantumcomputer - its quantum processor [12].
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Summary and Conclusion

In this work we introduced the basic principles of quantum computers. Ourfirst goal was to introduce the fundamentals of quantum computing. In Chapter2 we have shown basic quantum gates and their geometrical meaning on theBloch sphere. These gates are an essential part of building more complicatedquantum circuits performing different calculations.In Chapter 3 we introduced quantum algorithms. Clearly there are manymore algorithms, such as Grover’s search algorithm (see [9]), but our main goalwas to introduce an important property of quantum computers called quantumparallelism. Understanding parallelism enabled us to build more complicatedquantum algorithms such as Deutsch’s algorithm. By presenting the quantumFourier transform we were able to derive a quantum algorithm for factoringwhich is extremely useful in cryptography.Our second task in this thesis was to summarize the present development ofquantum computers from scientific papers. At several universities and laborato-ries there are attempts to build quantum computers however we have chosen toexamine the Canadian D-Wave One device. We explained the principles how itworks and presented an experiment (finding the ground state of the Ising spinglass model) comparing the properties of D-Wave computer with that of a clas-sical one. It is worth saying that due to noisy, high error-rate qubits it is notpossible to run the previously mentioned algorithms (for example factorization)on the D-Wave One device.However as stated in article [20] it should be interesting to adress the openquestion of quantum speedup on future devices with more qubits. Going toeven larger problem sizes we soon approach the limits of classical computers.A quantum annealer showing better scaling than classical algorithms for largerproblem sizes would be a big breakthrough, validating the potential of quantuminformation processing to outperform its classical counterpart.
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