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I. VARIATIONAL

A. LHO with 1/(1 + x2) test function

Find an approximate ground state energy of the linear harmonic oscillator using a testing

function ψ = A
1+Bx2

, where A is a normalisation constant and B is a parameter. What is

the local energy?

Solution:

We first find the value of the normalisation constant A. For the wavefunction to be

normalised
∫
ψ∗ψ = 1, therefore∫ ∞

−∞
ψ∗(x)ψ(x)dx =

∫ ∞
−∞

A2

(1 +Bx2)2

=A2

(
x

2(1 +Bx2)
+
arctan(

√
Bx)

2
√
B

)
|∞−∞

=A2arctan(
√
Bx)

2
√
B

|∞−∞

=
A2

2
√
B

(π/2 + π/2)

=
A2π

2
√
B
.

As the result needs to be equal to one, we obtain

A =

√
2
√
B

π
.

The Hamiltonian of the LHO reads

H = − h̄2

2m

d2

dx2
+

1

2
mω2x2 ,

where the first part is the kinetic energy and the latter is the potential energy.

We first evaluate the expectation value of the kinetic energy for the testing function

〈ψ|T |ψ〉 =
2
√
B

π

∫ ∞
−∞

1

1 +Bx2

(
− h̄2

2m

d2

dx2

)
1

1 +Bx2
dx

=− 2
√
B

π

h̄2

2m

∫ ∞
−∞

1

1 +Bx2

d

dx

−2Bx

(1 +Bx2)2
dx

=− 2
√
B

π

h̄2

2m

∫ ∞
−∞

1

1 +Bx2

[
2(2Bx)2

(1 +Bx2)3
− 2B

(1 +Bx2)2

]
dx

=− 2
√
B

π

h̄2

2m

∫ ∞
−∞

[
8B2x2

(1 +Bx2)4
− 2B

(1 +Bx2)3

]
dx .
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Omitting the constants, the two terms integrate to π/(16B3/2) and 3π/(8B1/2), respectively.

The final dependence of the kinetic energy on the parameter B is then

〈ψ|T |ψ〉 =− 2
√
B

π

h̄2

2m

[
8B2 π

16B3/2
− 2B

3π

8
√
B

]
=− 2

√
B

π

h̄2

2m
π
√
B[

1

2
− 3

4
]

=
h̄2B

4m
.

For the potential energy, we obtain

〈ψ|V |ψ〉 =
2
√
B

π

∫ ∞
−∞

1

1 +Bx2

1

2
mω2x2 1

1 +Bx2
dx

=

√
Bmω2

π

∫ ∞
−∞

x2

(1 +Bx2)2
dx .

The integral is π/(2B3/2) so that the kinetic energy dependence is

〈ψ|V |ψ〉 =

√
Bmω2

π
π/2B3/2 =

mω2

2B
.

The total energy then depends on the parameter B as

E(B) =
h̄2B

4m
+
mω2

2B
.

To find the extrema, we differentiate with respect to B

dE(B)

dB
=

h̄2

4m
− mω2

2B2
.

Setting the result to zero gives us the following condition for B:

B =
mω
√

2

h̄
.

The total energy at this value of B is then

E =
h̄2B

4m
+
mω2

2B

=
ωh̄
√

2

4
+

ωh̄

2
√

2

=
ωh̄√

2
,

which is the final result. Note that the estimate is quite above the exact value of ωh̄
2

. Another

thing to note is that the expectation values of the potential and kinetic energies are identical,

which is in accordance with the virial theorem.
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B. Hydrogen atom with gaussian

Find an estimate of the ground state energy of the hydrogen atom using a test function

ψ = Nexp(−αr2). The Hamiltonian of a hydrogen atom is H = p2

2m
− e2

4πε0|r| .

Useful integrals: ∫ ∞
0

x2e−Ax
2

=
1

4A

√
π

A∫ ∞
0

x4e−Ax
2

=
3

2A

1

4A

√
π

A

Solution:

We first find the normalisation constant N :

1 = 〈ψ|ψ〉 = N2

∫
d3re−2αr2

The function has a spherical symmetry and thus we change the coordinates to spherical:

= N2

∫ ∞
0

r2dr

∫ 2π

0

dφ

∫ π

0

dθsin(θ)e−2αr2 .

Integrating over φ and θ yields the usual 4π factor, leading to

= N24π

∫ ∞
0

drr2e−2αr2 = N24π

√
π

2α

1

8α
= N2

( π
2α

)3/2

.

Hence N =
(

2α
π

)3/4
.

We now calculate the expectation value of the kinetic energy as a function of the vari-

ational parameter α, 〈ψ|T |ψ〉(α). Due to spherical symmetry, only the radial part of the

Laplacian 1
r2

d
dr
r2 d

dr
needs to be considered and we first calculate the action of the Laplacian

on the wavefunction ψ:

Tψ =− h̄2

2m

1

r2

d

dr
r2 d

dr
Ne−αr

2

=− h̄2

2m
N

1

r2

d

dr
r2(−2αr)e−αr

2

=
h̄2

2m
2αN

1

r2
(3r2 − 2αr4)e−αr

2

=
h̄2

2m
2αN(3− 2αr2)e−αr

2

The expectation value can be now obtained by integrating Tψ over entire space, considering
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again spherical symmetry and integrating out the θ and φ coordinates to gain 4π:

〈ψ|T |ψ〉(α) =4π

∫ ∞
0

r2drNe−αr
2 h̄2

2m
2αN(3− 2αr2)e−αr

2

=4πN2 h̄
2

2m
2α

∫ ∞
0

dr(3r2 − 2αr4)e−2αr2

=4π

(
2α

π

)3/2
h̄2

m
α

(
3

√
π

2α

1

8α
− 2α

√
π

2α

1

8α

3

4α

)
=8α

h̄2

m

(
3

8
− 3

16

)
=

3αh̄2

2m

The expectation value of the potential energy is again straightforward to calculate in spher-

ical coordinates

〈ψ|V |ψ〉(α) = −4π

∫ ∞
0

r2drN2e−2αr2 e2

4πε0r
= −4π

(
2α

π

)3/2
e2

4πε0

∫ ∞
0

drre−2αr2

We use a substitution u = 2αr2, du = 4αrdr to write

= −4π

(
2α

π

)3/2
e2

4πε0

∫ ∞
0

du
e−u

4α
= −4π

(
2α

π

)3/2
e2

4πε0

1

4α
= −2

√
2α

π

e2

4πε0
.

Collecting both results we find the energy dependence on the parameter α to be

E(α) =
3αh̄2

2m
− 2

√
2α

π

e2

4πε0

To find a stationary point of the dependence we compute the derivative

dE(α)

dα
=

3h̄2

2m
−
√

2

απ

e2

4πε0

Setting the derivative equal to zero yields for
√
α:

√
α =

2
√

2

3

me2

4πε0h̄
2√π

The energy corresponding to this value of α is then

E =
3h̄2

2m

8

9

m2e4

(4πε0)2h̄4π
− 2

√
2

π

e2

4πε0

2
√

2

3

me2

4πε0h̄
2√π

=
4m

3πh̄2 (
e4

4πε0
)2 − 8m

3πh̄2 (
e2

4πε0
)2

=− 4m

3πh̄2 (
e4

4πε0
)2
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The energy expression can be simplified considering that m
h̄2

( e4

4πε0
)2 is one Hartree or two

Rydbergs, the energy of the hydrogen 1s state. (We could also simply switch into atomic

units which would eliminate all these constants.) We therefore gain

E = − 4

3π
[Ha] = − 8

3π
[Ry] ≈ −0.8488[Ry]

The energy is above the correct result of one Rydberg, as expected.

Also note that at the optimal α, the kinetic energy contribution is minus one half of

the potential energy. This is in agreement with the virial theorem for the potential of the

hydrogen atom.

C. Particle in r3/2 potential

A charged particle moves in a field of a spherically symmetric three dimensional potential

V = − g2

r3/2
, where r2 = x2 + y2 + z2. Using a testing function ψ(r, θ, ϕ) =

√
k3

8π
e−

k
2
r, where

k > 0 is a parameter,

• validate that ψ is normalised;

• find variationally an approximate ground state energy.

Tha Laplace operator in three dimensions equals 1
r2

∂
∂r

(
r2 ∂

∂r

)
+

∆θ,ϕ

r2
and the Jacobi factor

is r2 sin θ.

Solution:

For ψ to be normalised
∫
d3rψ∗ψ needs to equal 1. The integral is∫

d3rψ∗ψ =

∫
d3r

k3

8π
e−kr

=

∫ ∞
0

dr
k3

8π
4πr2e−kr

=
k3

2

∫ ∞
0

drr2e−kr .

We now use integration by parts to find

= k

∫ ∞
0

dre−kr = k

[
e−kr

−k

]∞
0

= 1

The function is indeed normalised.
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To obtain an upper estimate of the ground state energy, we find the expectation values

of the kinetic and potential energies on the parameter k. First, we calculate the action of

the Laplacian on the wavefunction

∆ψ =
1

r2

∂

∂r

(
r2 ∂

∂r
e−kr/2

)
=− k

2

1

r2

∂

∂r

(
r2e−kr/2

)
=− k

2

1

r2

(
2re−kr/2 − k

2
r2e−kr/2

)
=− ke−kr/2

r
+
k2

4
e−kr/2 .

We now use this result to find the expectation value of the kinetic energy

〈ψ|T |ψ〉 =
k3

8π

∫ ∞
0

4πr2e−kr/2
[
− h̄2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)]
e−kr/2dr

=
k3

2

∫ ∞
0

r2e−kr/2
[
− h̄2

2m

(
−ke

−kr/2

r
+
k2

4
e−kr/2

)]
dr

=
k3

2

∫ ∞
0

(
h̄2k

2m
re−kr − h̄2k2

8m
r2e−kr

)
dr .

Using ∫ ∞
0

re−kr =

[
−(kr + 1)e−kr

k2

]∞
0

=
1

k2∫ ∞
0

r2e−kr =

[
−(k2r2 + 2kr + 2)e−kr

k3

]∞
0

=
2

k3

We obtain

〈ψ|T |ψ〉 =
k3

2

[
h̄2k

2m

1

k2
− h̄2k

8m

2

k3

]
=
h̄2k2

8m
.

The expectation value of the potential energy can be calculated as

〈Φ|V |Φ〉 =
k3

8π

∫ ∞
0

4πr2e−kr/2(− g2

r3/2
)e−kr/2dr

=− k3

2

∫ ∞
0

g2r1/2e−krdr .

The integral can be evaluated as∫ ∞
0

r1/2e−kr =

[√
πerf(

√
kr)

2k3/2
−
√
re−kr

k

]∞
0

=

√
π

2k3/2
.
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So that

〈Φ|V |Φ〉 = −k
3

2
g2

√
π

2k3/2
= −g2k3/2

√
π

4
.

Hence the energy depends on the parameter k as

E(k) =
h̄2k2

8m
− g2k3/2

√
π

4
.

Taking a derivative to find the extrema gives

h̄2k

4m
− 3g2k1/2

√
π

8
=0

k1/2

(
h̄2k1/2

4m
− 3g2

√
π

8

)
= 0 .

The extrema at the limit k = 0 gives a constant wavefunction with energy equal to zero.

The extrema at

h̄2k1/2

4m
− 3g2

√
π

8
= 0

k =
9g4m2π

4h̄4

gives an energy

E =
h̄2

8m

81g8m4π2

16h̄8 − 27g6m3π3/2

8h̄6

g2
√
π

4

=
g8m3π2

h̄6

(
3

2

)4
1

8
− g8m3π2

h̄6

(
3

2

)3
1

4

=
g8m3π2

h̄6

(
3

2

)3 [
3

16
− 1

4

]
= −27g8m3π2

128h̄6

which is our final estimate for the ground state energy of the system.

D. No matrix element no fun

Assume a Hamiltonian of a system for two states ψa and ψb is

H =

Ea 0

0 Eb


Show that no better solution can be found variationally than Ea and Eb.
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Solution:

We form the trial wavefunction as |ψ〉 = cosϕ|ψa〉 + sinϕ|ψb〉. This is normalised. The

energy expectation value using ϕ as a parameter is then

E =(cosϕ〈ψa|+ sinϕ〈ψb|)H(cosϕ|ψa〉+ sinϕ|ψb〉)

=cos2ϕ〈ψa|H|ψa〉+ sin2ϕ〈ψb|H|ψb〉+ cosϕsinϕ〈ψb|H|ψa〉+ sinϕcosϕ〈ψa|H|ψb〉 .

As the matrix element between the two functions |ψa〉 and |ψb〉 is zero, 〈ψb|H|ψa〉 = 0, the

last two terms drop out. The final expression for energy reads

E(ϕ) = cos2ϕ〈ψa|H|ψa〉+ sin2ϕ〈ψb|H|ψb〉 . (1)

We find the extrema of E(ϕ) by differentiating w.r.t. ϕ as

dE(ϕ)

dϕ
= −2cosϕsinϕ〈ψa|H|ψa〉+ 2sinϕcosϕ〈ψb|H|ψb〉 . (2)

The expression is equal to zero if i) sinϕ = 0 in which case |ψ〉 = |ψa〉. ii) cosϕ = 0 in which

case |ψ〉 = |ψb〉. iii) Haa = Hbb and the two vectors are degenerate with any combination

giving identical energy. In the first two cases, clearly no mixing of the states is allowed.

E. Rotator with cos2ϕ perturbation

The wavefunctions of a rotator are ψn = 1√
2π
exp(inϕ) with n ∈ Z.

II. PERTURBATION THEORY

A. LHO with Ax6 potential

The V = 1
2
mω2x2potential of linear harmonic oscillator changes to Ax6, in the first order

of the perturbation theory, calculate the energy of the ground state for the new potential.

Solution:

The original Hamiltonian reads

H =
p2

2m
+

1

2
mω2x2

and in the perturbed Hamiltonian, V = Ax6. The perturbing potential is then

V ′ = Ax6 − 1

2
mω2x2
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In the first order of perturbation theory, we need to obtain the expectation value of V ′

for a given state. The ground state wavefunction is Ψ = (α/π)
1
4 e

αx2

2 , with α = mω
h̄

. The

change of the energy of the ground state is then

∆E0 =〈0|V ′|0〉

=

√
α

π

∫ ∞
−∞

dx(−1

2
mω)x2e−αx

2

+

√
α

π

∫ ∞
−∞

dxAx6e−αx
2

=− 1

2
mω

√
α

π

√
π

α

1

2α
+ A

√
α

π

5

2α

3

2α

1

2α

√
π

α

=− 1

2
mω

h̄

2mω
+

15A

8α3

=− 1

4
h̄ω +

15A

8α3

The expectation value of the original potential is half of the ground state energy, due to

virial theorem.

B. LHO with doubled potential

Consider a particle with mass m moving in a field of harmonic potential with frequency

ω. The frequency changes so that the potential is doubled. Show that the new ground state

energy is exactly E =
√

2E0 =
√

2
2
h̄ω. Use perturbation theory to obtain the energy through

third order.

Solution:

The Hamiltonian of the LHO is

H =
p2

2m
+

1

2
mω2x2 ,

and the corresponding energies are En = h̄ω(n + 1
2
). When the potential is doubled, the

frequency changes to a new frequency ω′ which can be obtained as follows

1

2
mω′2 = 2 · 1

2
mω2

ω′2 = 2ω2

ω′ =
√

2ω .

We see that the new frequency is
√

2 times the original one. The energies for the new

potential are then E ′n = h̄ω′(n+ 1
2
) =
√

2h̄ω(n+ 1
2
).
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The change of the energy in the first order of parturbation theory is given by ∆E1 =

〈ψ|V ′|ψ〉. For the ground state this is

∆E1
0 =〈0|V ′|0〉

=〈0|1
2
mω2x2|0〉

=
1

4
h̄ω ,

where in the last step we used the virial theorem which gives for LHO that the mean value

of the potential energy is one half of the total energy.

Alternatively, the expectation value can be evaluated using the the raising (a) and low-

ering a+ operators for LHO and considering x = α√
2
(a+ a+). For x2 we than obtain

x2 =
α2

2
(a+ a+)(a+ a+) =

α2

2
(a2 + a+2

+ aa+ + a+a) =
α2

2
(a2 + a+2

+ 2a+a+ 1)

With α =
√

h̄
mω

The expectation value of the perturbing potential V ′ = 1
2
mω2x2 is then

〈0|V ′|0〉 =
1

2
mω2 h̄

2mω
〈0|a2 + a+2

+ 2a+a+ 1|0〉

=
1

4
h̄ω〈0|1|0〉

=
1

4
h̄ω .

In the last step we used the fact that the terms 〈0|a2|0〉 and 〈0|a+2|0〉 are zero as they result

in a different state on the right and on the left. Moreover, the term 〈0|a+a|0〉 is zero as

a|0〉 = 0, so that only the identity operator remains. The final result is then identical to

the one obtained from the knowledge of the virial theorem. Finally, an explicit integration

could be performed as well to obtain the result.

Therefore, in the first order of perturbation theory, we find that the estimated value of

the ground state energy for the perturbed system is

E1
0 =

1

2
h̄ω +

1

4
h̄ω =

3

4
h̄ω . (3)

This is above the exact result of 2
√

2
4
h̄ω.

The correction to the energy in the second order is

∆E2
0 =

∞∑
j 6=0

|〈j|V ′|0〉|2

ε0 − εj
.
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For the perturbation x2 ∼ a2 +a+2
+ 2a+a+ 1, only the matrix element between the ground

state and the second excited state will be non-zero, as a result of the action of the a+2

operator. Therefore, the expression for the energy correction simplifies to

∆E2
0 =

m2ω4

4

α4

4

|〈2|a+2|0〉|2

ε0 − ε2
,

where the first fraction comes from the square of 1
2
mω2 and the second fraction from the

square of the α2

2
coefficient. Using α2 = h̄

mω
, ε2 = 5

2
h̄ω, and a+|n〉 =

√
n+ 1|n+ 1〉 we find

∆E2
0 =

m2ω4

4

h̄2

4m2ω2

|
√

2|2
1
2
h̄ω − 5

2
h̄ω

=
ω2h̄2

16

2

−2h̄ω

=− h̄ω

16
.

As expected for ground state energy, the second order correction is negative.

The correction to within second order is then

E2
0 =

1

2
h̄ω +

1

4
h̄ω − h̄ω

16
=

1

2
h̄ω · 11

8
. (4)

The factor 11
8

= 1.375 is now closer to the
√

2 ≈ 1.414.

The correction to the ground state energy in third order can be written as

∆E3
0 =

∑
j 6=0

∑
k 6=0

〈0|V ′|k〉〈k|V ′|j〉〈j|V ′|0〉
(ε0 − εk)(ε0 − εj)

− 〈0|V ′|0〉
∑
j 6=0

|〈j|V ′|0〉|2

(ε0 − εj)2
.

For a matrix element of the x2 perturbation to be non-zero, the quantum number needs

to differ by two (in both directions), or needs to stay constant. Considering that neither j

nor k can be the ground state in the first expression, a non-zero contribution comes only

from j = k = 2 in the first expression. In the second expression, j = 2, as in the second

order. Explicit evaluation of the terms gives 5
128
h̄ω for the first term and −h̄ω

128
for the latter.

Overall, third order contributes 1
32
h̄ω to the energy, giving

E3
0 = 1.4375 · 1

2
h̄ω . (5)
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Comparing the results to sums for
√

2, we find that the formula

√
2 =

∞∑
k=0

(−1)k+1 (2k − 3)!!

(2k)!!
(6)

=1 +
1

2
− 1

2 · 4
+

1 · 3
2 · 4 · 6

− 1 · 3 · 5
2 · 4 · 6 · 8

+ . . . (7)

gives identical coefficients to those we found using perturbation theory. It is then very likely

that the subsequent orders of perturbation theory would follow the series.

C. Free particle with Dirac δ

Consider a free particle within periodic boundary conditions on an interval (0, L). What

are the wavefunctions, energies, and degeneracies of the states? A perturbing potential of

the form V ′ = Aδ(x−L/2) (periodically repeated) is added. What are the matrix elements

between any pair states for the perturbing potential? What is the correction to the energy

level for the ground state in the first and second order of perturbation theory? What are the

energies and wavefunctions of the first excited states within the first order of perturbation

theory? What is the first order change of the wavefunction of the ground state?

Solution:

The states of a particle within periodic boundary conditions are
Ψn= 1√

L
exp(2πinx

L)
, where L

is the length of the box and n is integer. For constant potential equal to zero, only kinetic

energy contributes to the total energy, so that En = 2h̄2π2

mL2 n
2. The ground state is non-

degenerate and all the excited states are twice degenerate, as the states with both positive

and negative n occur.

The matrix elements of the perturbing potential are

〈m|V ′|n〉 =
A

L

∫ L

0

e−
2πi
L
mxδ(x− L

2
)e

2πi
L
nx

=
A

L
e

2πi
L

L
2

(n−m)

=
A

L
eiπ(n−m) .

The matrix element is thus A
L

for pairs of states with (n−m) even and −A
L

for (n−m) odd.

The first order correction to the energy of the ground state n = m = 0 is then ∆E1
0 = A

L
.

This means that for A > 0 the potential is repulsive and the energy increases while for

A < 0, the potential is attractive and the energy is lowered.
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In the second order we need to evaluate

∆E
(2)
0 =

∑
j∈{Z−0}

|〈j|V ′|0〉|2

ε0 − εj
.

In this case the matrix elements of the perturbation between the ground state and the

excited states are all non-zero. Fortunately, they are all ±A
L

so that their squares are simply

A2

L2 . The energy of the unperturbed ground state is zero (ε0 = 0) and the energies of the

excited states are En = 2h̄2π2

mL2 n
2. We thus find for the correction

∆E
(2)
0 =

∑
j∈{Z−0}

A2

L2

0− 2h̄2π2n2

mL2

=− A2m

2h̄2π2

∑
j∈{Z−0}

1

j2

=− A2m

h̄2π2

∞∑
j=1

1

j2
.

The summation over inverse squares is known as the “Basel problem”, posed in 1644 and

was first derived by Leonhard Euler almost a hundred years later. The sum equals π2/6.

The final correction is thus

∆E
(2)
0 =− A2m

h̄2π2

π2

6

=− A2m

6h̄2

As expected for the second order energy correction to the ground state, ∆E
(2)
0 is negative

and always lowers the energy.

The excited states are twice degenerate, we therefore need to diagonalise the partial

Hamiltonian of the perturbation corresponding to these states to find their energies in the

first order of perturbation theory. The partial Hamiltonian contains the diagonal matrix

elements 〈n|V ′|n〉 as well as the elements of type 〈n|V ′| − n〉. In both cases, the matrix

elements are A/L and the matrix to diagonalise is

V ′sub =
A

L

1 1

1 1


The eigenvalues of this matrix are 0, for the state 1√

2
(|n〉 − | − n〉), and 2A

L
for the state

1√
2
(|n〉+ | − n〉). This result can be simply explained considering that

1√
2

(|n〉 − | − n〉) = i

√
2

L
sin(2πnx/L) ,
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which equals zero for x = L/2 and thus is not affected by the potential. The second state is

then
1√
2

(|n〉+ | − n〉) =

√
2

L
cos(2πnx/L) ,

which has a non-zero value for x = L/2.

We now calculate the correction to the ground state wavefunction. The first order cor-

rection reads

|i(1)〉 = |i(0)〉+
∑

j∈{Z−i}

|j〉〈j|V ′|i〉
εi − εj

.

Inserting the matrix element of the perturbation

|i(1)〉 = |i(0)〉+
∑

j∈{Z−i}

|j〉A
L
eiπ(j−i)

εi − εj
.

For the ground state i = 0 and we obtain

|0(1)〉 =
1√
L

+
∑

j∈{Z−0}

1√
L
e

2πijx
L

A
L
eiπj

−2h̄2π2j2

mL2

=
1√
L
− mL2

2h̄2π2

1√
L

A

L

∑
j∈{Z−0}

e
2πijx
L eiπj

j2

=
1√
L
− mA

√
L

2h̄2π2

∑
j∈{Z−0}

e
2πijx
L eiπj

j2
.

We now change the summation from all integers, except for zero, to summation over natural

numbers (1 to ∞), putting the −j term together with the +j term

|0(1)〉 =
1√
L
− mA

√
L

2h̄2π2

∞∑
j=1

eiπj[e
2πijx
L + e−

2πijx
L ]

j2
=

1√
L
− mA

√
L

h̄2π2

∞∑
j=1

(−1)jcos(2πjx
L

)

j2
.

We see that all excited states contribute to the first order correction to the wavefunction.

For the interesting point of x = L/2 we obtain

ψ
(1)
0 (L/2) =

1√
L
− mA

√
L

h̄2π2

∞∑
j=1

(−1)jcos(2πjL
2L

)

j2

=
1√
L
− mA

√
L

h̄2π2

∞∑
j=1

(−1)jcos(πj)

j2
.
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Since cos(πj) = (−1)j, we get

ψ
(1)
0 (L/2) =

1√
L
− mA

√
L

h̄2π2

∞∑
j=1

(−1)2j

j2

=
1√
L
− mA

√
L

h̄2π2

∞∑
j=1

1

j2

=
1√
L
− mA

√
L

h̄2π2

π2

6

=
1√
L
− mA

√
L

6h̄2 .

The sign of the correction is correct – when A > 0, a repulsive potential is present and

the density will be reduced, for the opposite case of an attractive potential, the density will

increase.

Interestingly, one can see that the second derivative becomes infinite. This agrees with the

fact that for the δ potential, the exact wavefunction contains a jump in the derivative in the

point of the potential. We try to model this potential with smooth functions which can reach

the exact result only in the infinite limit. An exactly the same problem of slow convergence

of the wavefunction with the number of excited states considered is encountered when using

perturbation theory for the many-electron problem in atoms, molecules, and solids.

D. LHO with Ax2y2 perturbation

A particle with mass m moves in the x-y plane in a 2D isotropic linear harmonic oscillator

potential with a frequency ω and centered at origin. The particle is subject to an additional

perturbing potential of the form V ′ = Ax2y2. What is the energy of the ground state to

within second order perturbation theory? What are the energies of the first and second

excited states in the first order of perturbation theory?

Solution:

The unperturbed Hamiltonian is

H0 =
p2
x

2m
+

p2
y

2m
+

1

2
mω(x2 + y2) ,

the corresponding eigenstates are ψn(x) ⊗ ψm(y) = |nm〉 and the eigenenergies Enm =

h̄ω(n+m+ 1).
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The corrections to the original energies can be simply evaluated when the perturbing

potential is rewritten using the lowering and raising operators for the LHO. As x = α√
2
(a+

a+), we obtain

V ′ = A
α4

4
(a2 + a+2

+ 2a+a+ 1)⊗ (b2 + b+2
+ 2b+b+ 1) ,

where a acts in the x space and b in the y space. We see that non-zero matrix elements

between different states occur when the quantum number n is either lowered or decreased

by two or stays constant. The same (but independent) requirement holds for the quantum

number m. This means that, for example, the diagonal matrix elements will be non-zero as

both indices stay constant (e.g., matrix elements of the type 〈nm|V ′|nm〉).

The first order correction to the ground state energy is obtained as the matrix element

of the perturbation

〈00|V ′|00〉 =A
α4

4
〈00(a2 + a+2

+ 2a+a+ 1)⊗ (b2 + b+2
+ 2b+b+ 1)|00〉

=A
α4

4
〈0|2a+a+ 1|0〉 ⊗ 〈0|2b+b+ 1|0〉

=A
α4

4
〈0|1|0〉 ⊗ 〈0|1|0〉

=A
α4

4
,

where we used that a|0〉 = 0 and that the matrix elements of the squares of lowering or

raising operators are zero.

In the second order correction to the ground state energy, only states |20〉, |02〉, and |22〉

will contribute as for V ′ all the other states have zero matrix elements with the ground state.

The contributions are

∆E(|20〉) =
|〈00|V ′|20〉|2

ε0 − ε20

=A2α
8

16

|〈00|a2 ⊗ (2b+b+ 1)|20〉|2

h̄ω − 3h̄ω

=A2α
8

16

(
√

2 · 1)2

−2h̄ω

=− A2 α8

16h̄ω
,

where we wrote only the relevant operators of the perturbation on the second line. The

contribution of the state |02〉 will be identical.
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The correction to the energy from the state |22〉 is

∆E(|22〉) =
|〈00|V ′|22〉|2

ε0 − ε22

=A2α
8

16

|〈00|a2 ⊗ b2|22〉|2

h̄ω − 5h̄ω

=A2α
8

16

(
√

2 ·
√

2)2

−4h̄ω

=− A2 α8

16h̄ω
,

Hence the same correction is found also here, so that the total ground state energy through

second order is

E
(
002) = h̄ω + A

α4

4
− 3A2 α8

16h̄ω
.

There are two first excited states, namely |10〉 and |01〉, each with energy 2h̄ω. For

degenerate states we need to diagonalise the partial Hamiltonian within the subspace of the

degenerate states. However, in this case one can see that 〈10|V ′|01〉 = 0 since each quantum

number changes by one and such states are not coupled by the perturbation. Therefore, the

energies of both the states will remain degenerate and will shift by 〈10|V ′|10〉, which is

〈10|V ′|10〉 =A
α4

4
〈10(a2 + a+2

+ 2a+a+ 1)⊗ (b2 + b+2
+ 2b+b+ 1)|10〉

=A
α4

4
〈1|2a+a+ 1|1〉 ⊗ 〈0|2b+b+ 1|0〉

=A
α4

4
〈1|2a+a+ 1|1〉 ⊗ 〈0|1|0〉

=3A
α4

4
.

There are three excited states, |20〉, |02〉, and |11〉. The state |11〉 has zero matrix

elements of the perturbation with the other two states and will shift by

〈11|V ′|11〉 =A
α4

4
〈11(a2 + a+2

+ 2a+a+ 1)⊗ (b2 + b+2
+ 2b+b+ 1)|11〉

=A
α4

4
〈1|2a+a+ 1|1〉 ⊗ 〈1|2b+b+ 1|1〉

=A
α4

4
3 · 3

=9A
α4

4
.

The matrix element of the perturbation is non-zero between states |20〉 and |02〉 so we

need to calculate and diagonalise the partial Hamiltonian. For this, we need 〈20|V ′|20〉 which
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will be identical to 〈02|V ′|02〉 due to the symmetry of the perturbation, and the coupling

element 〈20|V ′|02〉, which is again identical to the conjugate 〈02|V ′|20〉. We obtain

〈20|V ′|20〉 =A
α4

4
〈20(a2 + a+2

+ 2a+a+ 1)⊗ (b2 + b+2
+ 2b+b+ 1)|20〉

=A
α4

4
〈2|2a+a+ 1|2〉 ⊗ 〈0|1|0〉

=A
α4

4
5 · 1

=5A
α4

4
,

for the diagonal part and

〈20|V ′|02〉 =A
α4

4
〈20(a2 + a+2

+ 2a+a+ 1)⊗ (b2 + b+2
+ 2b+b+ 1)|02〉

=A
α4

4
〈2|a+2|0〉 ⊗ 〈0|b2|2〉

=A
α4

4

√
2 ·
√

2

=A
α4

2
.

for the coupling element. The partial Hamiltonian is then

H02,20 = A
α4

4

5 2

2 5

 ,

which has eigenvalues (5 ± 2)Aα4

4
. For A > 0, the lower energy state with E = 3Aα4

4

corresponds to a combination 1√
2
(|20〉 − |02〉) and the higher energy state with E = 7Aα4

4
is

the combination 1√
2
(|20〉+ |02〉).

III. ANGULAR MOMENTUM

A. Lim 3004

Calculate the expectation values of Lx and L2
x for a state with angular momentum lh̄ and

a projection onto the z axis mh̄.

Solution:

The expectation value of Lx can be obtained using the commutation relations for com-

ponents of angular momentum: ih̄Lx = [Ly, Lz]. Hence

〈Lx〉 = 〈lm| 1
ih̄

[Ly, Lz]|lm〉 =
1

ih̄
〈lm|LyLz − LzLy|lm〉
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We now use Lz|lm〉 = h̄m|lm〉 (and its conjugate) to find

〈Lx〉 =
1

ih̄
〈lm|mh̄Ly|lm〉 −

1

ih̄
〈lm|mh̄Ly|lm〉 = 0 .

Alternatively, we can make use of the rising and lowering operators for angular momentum

L+ = Lx + iLyL− = Lx − iLy .

Which gives Lx = 1
2
(L+ + L−). As

L±|lm〉 = h̄
√
l(l + 1)−m(m± 1)|lm± 1〉 ,

we obtain

〈lm|Lx|lm〉 =
1

2
h̄
√
l(l + 1)−m(m+ 1)〈lm|lm+ 1〉

+
1

2
h̄
√
l(l + 1)−m(m− 1)〈lm|lm− 1〉

= 0 ,

as the basis of the |lm〉 states is orthonormal.

The expectation value of the square of the Lx operator can be obtained using the operator

of the magnitude of the momentum L2 and of the projection into the z axis. As L2 =

L2
x + L2

y + L2
z and 〈L2

x〉 = 〈L2
y〉, due to the symmetry of the problem, the expectation value

is 〈L2
x〉 = 1

2
〈(L2 − L2

z)〉. Using L2|lm〉 = l(l + 1)h̄2|lm〉 and Lz|lm〉 = h̄m|lm〉, we obtain

〈L2
x〉 = 1

2
h̄2(l(l + 1)−m2).

Using the raising and lowering operators, we have

L2
x =

1

4
(L+ + L−)(L+ + L−) =

1

4
(L+L+ + L−L− + L−L+ + L+L−)

The expectation value of the squares of the raising or lowering operators is zero (as

〈lm|L2
+|lm〉 = c〈lm|lm + 2〉 = 0) and only the mixed terms remain. They can be eval-



20

uated as

〈L2
x〉 =

1

4
〈lm|L−L+ + L+L−|lm〉

=
1

4
h̄〈lm|L−

√
l(l + 1)−m(m+ 1)|lm+ 1〉+

1

4
h̄〈lm|L+

√
l(l + 1)−m(m− 1)|lm− 1〉

=
1

4
h̄2〈lm|

√
l(l + 1)− (m+ 1)(m+ 1− 1)

√
l(l + 1)−m(m+ 1)|lm〉

+
1

4
h̄2〈lm|

√
l(l + 1)− (m− 1)(m− 1 + 1)

√
l(l + 1)−m(m− 1)|lm〉

=
1

4
h̄2(l(l + 1)−m(m+ 1)) +

1

4
h̄2(l(l + 1)−m(m− 1))

=
1

4
h̄2(2l(l + 1)−m(m+ 1)−m(m− 1))

=
1

2
h̄2(l(l + 1)−m2) .

Which agrees with the previous result.

B. Lim 3007

A particle with spin S = 1 is in a state with an angular momentum of L = 2. A spin-orbit

Hamiltonian

H = AL · S

describes the interaction between the particles. What are the possible energies and their

degeneracies for this system.

Solution: The spin-orbit Hamiltonian does not commute with individual projections of

the spin and angular momentum, i.e. [Lz, L · S] 6= 0 and [Sz, L · S] 6= 0. The Hamiltonian

is, however, diagonal in the basis of the total momentum J = L + S and its projections

Jz = Lz + Sz.

The Hamiltonian can be rewritten using the operator of the magnitude of the total

momentum J2 = L2 + S2 + 2L · S, from which we find

L · S =
1

2
(J2 − L2 − S2) .

The magnitude of the (L = 2) orbital momentum is L2|lm〉 = l(l + 1)h̄2|lm〉 = 6h̄2|lm〉 and

for spin (S = 1) we have S2|ssz〉 = s(s + 1)h̄2|ssz〉 = 2h̄2|ssz〉 and are thus identical for all

the states.

The rules of combination of angular momenta give possible values for the total momentum

J = L+S, . . . , |L−S|. Therefore, for L = 2 and S = 1 we have J = 3, 2, 1. The magnitude
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of the total momentum is J2|JJzLS〉 = J(J+1)h̄2|JJzLS〉, which, for the possible values of

J gives 12h̄2, 6h̄2, and 2h̄2, respectively. As the expectation values of the Hamiltonian are

〈H〉 = 〈JJzLS|
A

2
(J2 − L2 − S2)|JJzLS〉 ,

We get

E(J = 3) = 2Ah̄2

E(J = 2) = −Ah̄2

E(J = 1) = −3Ah̄2

which are 7, 5, and 3-fold degenerate, respectively.

C. Two spins – Lim 3034

Consider a system with two non-interacting spins. The first is in a state sAz = +1/2, the

second in a state sBx = +1/2. What’s the probability that the total spin is zero?

Solution:

Two particles with spin one half lead to total spin one with three-fold degeneracy and a

non-degenerate spin zero state. For the total spin equal to zero, the state is (taking z as the

quantisation coordinate)

|S = 0, Sz = 0〉 =
1√
(2)

(| ↑A↓B〉 − | ↓A↑B〉) .

To be able to project on this state, we need to transform the sBx = +1/2 state into the sBz

basis. The representation of the sBx states can be found by diagonalisation of the sx operator

matrix

sx =
h̄

2

0 1

1 0

 . (8)

The eigenvalues are ±1h̄/2 and the states are 1√
2

(
1
1

)
for the +h̄/2 state and 1√

2

(
1
−1

)
for the

−h̄/2 state. That is, |sx = +1/2〉 = 1√
2
(|sz = +1/2〉+ |sz = −1/2〉). Therefore,

|sAz = +1/2, sBx = +1/2〉 =
1√
2

(|sAz = +1/2, sBz = +1/2〉+ |sAz = +1/2, sBz = −1/2〉 .
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The projection on the zero spin state is then (in a short-hand notation)

〈00|sAz = +1/2, sBx = +1/2〉 =
1

2
(〈↑A↓B | − 〈↓A↑B |) (| ↑A↑B〉+ | ↑A↓B〉)

=
1

2
(〈↑A↓B | ↑A↑B〉+ 〈↑A↓B | ↑A↓B〉 − 〈↓A↑B | ↑A↑B〉 − 〈↓A↑B | ↑A↓B〉)

=
1

2
(0 + 1 + 0 + 0) =

1

2

(9)

The probability is

|〈00|sAz = +1/2, sBx = +1/2〉|2 =
1

4
.

D. Lim 3017

An electron is prepared with projection of the spin +h̄/2 along the z axis.

• What are the possible results of measurement of spin along the x axis?

• What is the probability of finding these results?

• If we measure the spin along axis restricted to the x− z plane and rotated by an angle

θ from the z axis, what are the probabilities of measuring the different results?

• What is the expectation value of spin measured along the rotated axis, given the initial

projection along z?

Solution:

The measured electron spin will be ±h̄/2 along any axis. This can be shown by finding

the eigenvalues of the sx operator that describes the act of measuring the spin along x

axis. Its eigenvalues are then the only possible results of measuring the spin (given an

isolated system). We find the eigenvalues by diagonalising the matrix representation of the

sx operator in the basis of the states corresponding to measurement along the z axis. The

sx operator is given as

sx =
h̄

2

0 1

1 0

 .

The eigenvalues are found by calculating the determinant of

h̄

2

−λ 1

1 −λ

 = λ2 − 1,
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therefore the eigenvalues are indeed λ = ±h̄/2. The eigenvector corresponding to λ = h̄/2

is 1√
2

(
1
1

)
and the eigenvector corresponding to λ = −h̄/2 is 1√

2

(
1
−1

)
.

E. Spin-spin Hamiltonian

Two particles (A and B) with spin 1/2 interact via Hamiltonian H = JsA · sB. Find the

eigenenergies of the Hamiltonian by rewriting it using the operators of the magnitudes of

the spin.

Solution:

The problem is analogous to the problem of spin-orbit interaction. The dot product in

the Hamiltonian does not commute with the operators of the projections of the individual

spins into the z axis. We therefore introduce the total spin S = sA ⊗ 1B + 1A ⊗ sB and

its projection Sz = sAz ⊗ 1B + 1A ⊗ sBz , which communte with the Hamiltonian. By the

rules of combination of angular momenta the total spin can be either S = 1
2

+ 1
2

= 1 or

S = 1
2
− 1

2
= 0. In the first case, three projections are possible, in the latter, only one.

To find the new eigenvalues we rewrite the dot product using the operator of the magni-

tude of the total spin

S2 = (sA + sB)2 = s2
A ⊗ 1B + 1A ⊗ s2

B + 2sA · sB . (10)

Hence

sA · sB =
1

2
(S2 − s2

A ⊗ 1B − 1A ⊗ s2
B) . (11)

The action of an operator of the magnitude of the spin is s2|ssz〉 = h̄2s(s + 1)|ssz〉. For

particles with spin s = 1
2
, we obtain 3

4
h̄2. For the triplet states with total spin S = 1, we

get 2h̄2 and for the singlet state with spin S = 0 we get 0.

The energies are then for triplet

E(T) =
J

2
(2h̄2 − 3

4
h̄2 − 3

4
h̄2) =

J

4
h̄2 (12)

and for the singlet state

E(S) =
J

2
(0− 3

4
h̄2 − 3

4
h̄2) = −3J

4
h̄2 . (13)

This agrees with the results obtained by exact diagonalisation.
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F. Spin-spin Hamiltonian in matrix representation

Two particles (A and B) with spin 1/2 interact via Hamiltonian H = JsA · sB. Write

the matrix representation of the Hamiltonian in the direct basis. Find the eigenvectors and

eigenvalues of the Hamiltonian.

Solution:

The Hamiltonian reads AsA · sB, where the dot product stands for

sA · sB = sAx ⊗ sBx + sAz ⊗ sBz + sAz ⊗ sBz .

The matrix representation of the spin operators (sx etc.) in the standard quantisation along

z axis uses the Pauli matrices

sx =
h̄

2

0 1

1 0


sy =

h̄

2

0 −i

i 0


sz =

h̄

2

1 0

0 −1


The basis functions are spin up and down along the z axis: | ↑〉 =

(
1
0

)
and | ↓〉 =

(
0
1

)
.

Calculating the expectation values of the spin components using these vectors gives zeros

for the x and y components and either h̄
2

or − h̄
2

for the z component, as expected.

The Hamiltonian is written as a direct product of the spin matrices, it can be thus written

as a 4 × 4 matrix. We will go from the direct product of two 2 × 2 matrices to the 4 × 4

matrix using the following scheme:

A B

C D

⊗
α β

γ δ

 =


Aα Aβ Bα Bβ

Aγ Aδ Bγ Bδ

Cα Cβ Dα Dβ

Cγ Cδ Dγ Dδ

 (14)

This corresponds to a basis set | ↑↑〉, | ↑↓〉, | ↓↑〉, and | ↓↓〉, where the first spin is of the A

particle and the latter of the B particle.
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For example, the part of the Hamiltonian originating from the z components is

J
h̄

2

1 0

0 −1

⊗ h̄

2

1 0

0 −1

 = J
h̄2

4


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (15)

This shows that for H = JsAz ⊗ sBz there are two energy levels, one with aligned spins (H11

for | ↑↑〉 state and H44 for | ↓↓〉 state). In this case the energy is E = h̄2

4
J . For the usual

ferromagnetic ordering, J < 0 and this will be the (degenerate) ground state. The states

with anti-parallel spins will be higher in energy. Anti-ferromagnetic order can be observed

as well in some materials and then J > 0 and the anti-parallel states have lower energy than

the states with parallel spins.

The parts of the Hamiltonian corresponding to the x and y components can be calculated

analogously to the z component, for x we obtain

J
h̄

2

0 1

1 0

⊗ h̄

2

0 1

1 0

 = J
h̄2

4


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (16)

and for y

J
h̄

2

0 −i

i 0

⊗ h̄

2

0 −i

i 0

 = J
h̄2

4


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 (17)

Overall, summing these three parts, we obtain the Hamiltonain

H = J
h̄2

4


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

 (18)

We see that the Hamiltonian is not diagonal in the direct product basis, specifically, the

states with anti-parallel spins are not eigenvectors of the new Hamiltonian. In contrast, the

states with aligned spins are still eigenvectors. To find the new states with anti-parallel
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spins we need to diagonalise the part of the Hamiltonian corresponding to these two states

Hanti = J
h̄2

4

−1 2

2 −1

 . (19)

For the eigenvalues we readily obtain ε1,2 = −1±2 corresponding to vectors 1√
2

(
1
1

)
= 1√

2
(| ↑↓

〉 + | ↓↑〉) and 1√
2

(
1
−1

)
= 1√

2
(| ↑↓〉 − | ↓↑〉). The energies of these two states are h̄2

4
J for the

first and −3h̄2

4
J for the latter. Therefore, the state with symmetric spin wavefunction has

the same energy as the states with both spins up or both spins down. Together, they form

the triplet states with total spin S = 1 and projections Sz = 1, 0,−1. The state with anti-

symmetric spin wavefunction is the singlet state with S = 0 and only possible projection

Sz = 0. This can be verified by explicitly applying the operator of the magnitude of the

total spin S2 (TODO) .

G. Coupling of momenta

A spin h̄/2 particle is bound in a spherically symmetric potential and is in a state with

orbital momentum l = 1h̄. What are the possible values of the total momentum and the

projections onto the z axis?

The particle is in a state with j = 3h̄
2

and j = h̄
2

that can be written in the product basis

as

|ψ〉 = |j = 3/2, jz = 1/2, l, s〉 =

√
2

3
|l, lz = 0; s, sz = +

1

2
〉+

√
1

3
|l, lz = 1; s, sz = −1

2
〉 .

• What are the respective results when the operators j2 and jz act on the state |ψ〉?

• Verify, that the state |ψ〉 is also an eigenstate of the operator jz = lz ⊗ 1 + 1 ⊗ sz in

the product basis of the original states.

• Rewrite the operator of the magnitude of the total momentum j2 = (~l⊗1+1⊗~s)2 using

the operators l2, lz, l−, l+, s
2, sz, s−, s+ and verify that the state |ψ〉 is an eigenstate of

j2.

Solution:

The rules for combining angular momenta give two possible values for the total momen-

tum: j = 3h̄
2

and j = h̄
2
. The possible projections are jz = 3h̄

2
, h̄

2
, − h̄

2
, and −3h̄

2
for the first

and jz = h̄
2

and − h̄
2

for the latter.
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The state |ψ〉 corresponds to j = 3h̄
2

and jz = h̄
2
, after acting with j2 we obtain

j2|j = 3/2, jz = 1/2, l, s〉 =
3

2
(
3

2
+1)h̄2|j = 3/2, jz = 1/2, l, s〉 =

15

4
h̄2|j = 3/2, jz = 1/2, l, s〉 .

For the projection onto the z axis we obtain

jz|j = 3/2, jz = 1/2, l, s〉 =
h̄

2
|j = 3/2, jz = 1/2, l, s〉 .

We will now use the product basis where operators of the individual momenta act. For

the projection onto the z axis we obtain

(lz ⊗ 1 + 1⊗ sz)[
√

2

3
|l, lz = 0; s, sz = +

1

2
〉+

√
1

3
|l, lz = 1; s, sz = −1

2
〉]

=

√
2

3
(lz ⊗ 1)|l, lz = 0; s, sz = +

1

2
〉+

√
2

3
(sz ⊗ 1)|l, lz = 0; s, sz = +

1

2
〉

+

√
1

3
(lz ⊗ 1)|l, lz = 1; s, sz = −1

2
〉+

√
1

3
(sz ⊗ 1)|l, lz = 1; s, sz = −1

2
〉

=

√
2

3
0h̄|l, lz = 0; s, sz = +

1

2
〉+

√
2

3

h̄

2
|l, lz = 0; s, sz = +

1

2
〉

+

√
1

3
h̄|l, lz = 1; s, sz = −1

2
〉 −

√
1

3

h̄

2
|l, lz = 1; s, sz = −1

2
〉

=
h̄

2

√
2

3
|l, lz = 0; s, sz = +

1

2
〉+

h̄

2

√
1

3
|l, lz = 1; s, sz = −1

2
〉

=
h̄

2
|ψ〉 .

That is, the results obatained in the product and coupled basis are identical, as they should.

The operator of the magnitude of the total momentum j2 can be expressed as

j2 = (l ⊗ 1 + 1⊗ s)2 = (l2 ⊗ 1 + 1⊗ s2 + 2lx ⊗ sx + 2ly ⊗ sy + 2lz ⊗ sz) .

Using lx = 1
2
(l+ + l−) a lx = 1

2i
(l+ − l−) and similarly for the spin component, we rewrite

the x and y components as

lx ⊗ sx + ly ⊗ sy =

=
1

4
(l+ + l−)⊗ (s+ + s−)− 1

4
(l+ − l−)⊗ (s+ − s−)

=
1

2
(l− ⊗ s+ + l+ ⊗ s−) .

Overall, we have

j2 = (l2 ⊗ 1 + 1⊗ s2 + l− ⊗ s+ + l+ ⊗ s− + 2lz ⊗ sz) .
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The state |ψ〉 is an eigenstate of both l2 and s2, with eigenvalues 2h̄2 and 3h̄2

4
, respectively.

The remaining contributions can be found by explicitly applying the operators on the states.

For the first remaining term

l− ⊗ s+[

√
2

3
|l, lz = 0; s, sz = +

1

2
〉+

√
1

3
|l, lz = 1; s, sz = −1

2
〉] ,

the action on the first component will give zero, s+|s, sz = +1
2
〉 = 0, as the spin projection

onto the z axis is already maximal. We then have to evaluate

l− ⊗ s+

√
1

3
|l, lz = 1; s, sz = −1

2
〉

= h̄2

√
1

3

√
1(1 + 1)− 1(1− 1)

√
1

2
(
1

2
+ 1)− (−1

2
)(−1

2
+ 1)|l, lz = 0; s, sz =

1

2
〉

= h̄2

√
1

3

√
2
√

1|l, lz = 0; s, sz =
1

2
〉

= h̄2

√
2

3
|l, lz = 0; s, sz =

1

2
〉

In the term

l+ ⊗ s−[

√
2

3
|l, lz = 0; s, sz = +

1

2
〉+

√
1

3
|l, lz = 1; s, sz = −1

2
〉] ,

the second contribution will be zero as the l projection is the largest and the spin projection

is the lowest possible. We therefore need to evaluate

l+ ⊗ s−

√
2

3
|l, lz = 0; s, sz =

1

2
〉

= h̄2

√
2

3

√
1(1 + 1)− 0(0 + 1)

√
1

2
(
1

2
+ 1)− (

1

2
)(

1

2
− 1)|l, lz = 1; s, sz = −1

2
〉

= h̄2

√
2

3

√
2
√

1|l, lz = 1; s, sz = −1

2
〉

= h̄2 2√
3
|l, lz = 1; s, sz = −1

2
〉 .

Finally, the term containing the projections onto the z axis becomes

2lz ⊗ sz[
√

2

3
|l, lz = 0; s, sz = +

1

2
〉+

√
1

3
|l, lz = 1; s, sz = −1

2
〉]

= 2(0h̄)(
h̄

2
)

√
2

3
|l, lz = 0; s, sz = +

1

2
〉+ 2(h̄)(− h̄

2
)

√
1

3
|l, lz = 1; s, sz = −1

2
〉

= −h̄2

√
1

3
|l, lz = 1; s, sz = −1

2
〉 .
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Summing the last three results we find

(l− ⊗ s+ + l+ ⊗ s− + 2lz ⊗ sz)|ψ〉 =

=h̄2

√
2

3
|l, lz = 0; s, sz =

1

2
〉+ h̄2 2√

3
|l, lz = 1; s, sz = −1

2
〉

− h̄2

√
1

3
|l, lz = 1; s, sz = −1

2
〉

=h̄2

√
2

3
|l, lz = 0; s, sz =

1

2
〉+ h̄2

√
1

3
|l, lz = 1; s, sz = −1

2
〉

=h̄2[

√
2

3
|l, lz = 0; s, sz =

1

2
〉+

√
1

3
|l, lz = 1; s, sz = −1

2
〉]

=h̄2|ψ〉 .

Therefore, |ψ〉 is an eigenstate of the operator 2l · s with an eigenvalue of h̄2. Together with

the contributions of l2 and s2 the total eigenvalue of j2 is (2 + 3
4

+ 1)h̄2 = 15
4
h̄2, as it should

for j = 3
2
h̄.


